Objective: In vitro activation of the receptor EphB4 positively affects human osteoarthritis (OA) articular cell metabolism. However, the specific in vivo role of this ephrin receptor in OA remains unknown. We investigated in mice the in vivo effect of bone-specific EphB4 overexpression on OA pathophysiology.

Methods: Morphometric, morphologic, and radiologic evaluations were performed on postnatal day 5 (P5) mice and on 10-week-old mice. Knee OA was induced surgically by destabilization of the medial meniscus (DMM) in 10-week-old male EphB4 homozygous transgenic (EphB4-Tg) and wild-type (WT) mice. Medial compartment evaluations of cartilage were performed using histology and immunohistochemistry, and evaluations of subchondral bone using histomorphometry, osteoclast staining, and micro-computed tomography.

Results: There was no obvious phenotype difference in skeletal development between EphB4-Tg mice and WT mice at P5 or at 10 weeks. At 8 and 12 weeks post-DMM, the EphB4-Tg mice demonstrated significantly less cartilage alteration in the medial tibial plateau and the femoral condyle than did the WT mice. This was associated with a significant reduction of aggrecan and type II collagen degradation products, type X collagen, and collagen fibril disorganization in the operated EphB4-Tg mice. The medial tibial subchondral bone demonstrated a significant reduction in sclerosis, bone volume, trabecular thickness, and number of tartrate-resistant acid phosphatase-positive osteoclasts at both times assessed post-DMM in the EphB4-Tg mice than in the WT mice.

Conclusion: This is the first in vivo evidence that bone-specific EphB4 overexpression exerts a protective effect on OA joint structural changes. The findings of this study stress the in vivo importance of subchondral bone biology in cartilage integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.34638DOI Listing

Publication Analysis

Top Keywords

subchondral bone
16
ephb4-tg mice
16
bone-specific ephb4
12
ephb4 overexpression
12
mice
11
vivo bone-specific
8
mice medial
8
post-dmm ephb4-tg
8
medial tibial
8
type collagen
8

Similar Publications

Background: The accurate diagnosis of degenerative joint diseases (DJDs) of the temporomandibular joint (TMJ) presents a significant clinical challenge due to their progressive nature and the complexity of associated structural changes. These conditions, characterized by cartilage degradation, subchondral bone remodeling, and eventual joint dysfunction, necessitate reliable and efficient imaging techniques for early detection and effective management. Cone-beam computed tomography (CBCT) is widely regarded as the gold standard for evaluating osseous changes in the TMJ, offering detailed visualization of bony structures.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is a chronic articular disease characterized by the progressive degeneration of cartilage and bone tissue, leading to the appearance of subchondral cysts, osteophyte formation, and synovial inflammation. Conventional treatments consist of non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, and glucocorticoids. However, the prolonged use of these drugs causes adverse effects.

View Article and Find Full Text PDF

Background: The optimal treatment of Osteochondral lesion of the talus (OLT) for subchondral bone cysts (SBCs) has not been finalized. The purpose of this systematic review and meta-analysis was to define whether OLT with small SBCs will affect the clinical outcomes of OLTs after arthroscopic microfracture.

Methods: We searched the Embase, Cochrane Library and PubMed databases up to May 13, 2024 for eligible comparative studies.

View Article and Find Full Text PDF

Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain.

Int J Oral Sci

January 2025

Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.

Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain.

View Article and Find Full Text PDF

High-resolution microCT analysis of sclerotic subchondral bone beneath bone-on-bone wear grooves in severe osteoarthritis.

Bone

January 2025

Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:

Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!