AI Article Synopsis

  • Increased faecal butyrate levels in irritable bowel syndrome (IBS) may enhance visceral sensitivity, prompting research on the underlying signal transduction mechanisms in rats treated with sodium butyrate (NaB).
  • Colorectal distention studies revealed that NaB significantly boosts visceromotor responses, linked to increased phosphorylation of key proteins like ERK1/2 and Kv4.2 in dorsal root ganglion (DRG) neurons.
  • Administration of a MAP kinase inhibitor (U0126) not only reduced hypersensitivity in NaB-treated rats but also blocked the phosphorylation changes, suggesting that activation of the MAP kinase-ERK1/2 pathway plays a crucial role in enhancing neuronal excitability and contributing to visceral hypersensitivity

Article Abstract

Objective: Increased faecal butyrate levels have been reported in irritable bowel syndrome. Rectal instillation of sodium butyrate (NaB) increases visceral sensitivity in rats by an unknown mechanism. We seek to examine the signal transduction pathways responsible for the enhanced neuronal excitability in the dorsal root ganglion (DRG) following NaB enemas and demonstrate that this is responsible for the colonic hypersensitivity reported in this animal model.

Design: Colorectal distention (CRD) studies were performed in rats treated with NaB rectal instillation with/without intrathecal or intravenous administration of mitogen-activated protein (MAP) kinase kinase inhibitor U0126. Western blot analysis and immunocytochemistry studies elucidated intracellular signalling pathways that modulate IA. Patch-clamp recordings were performed on isolated DRG neurons treated with NaB, with/without U0126.

Results: Visceromotor responses (VMR) were markedly enhanced in NaB-treated rats. Western blot analysis of DRG neurons from NaB-treated rats showed a 2.2-fold increase in phosphorylated ERK1/2 (pEKR1/2) and 1.9-fold increase in phosphorylated voltage-gated potassium channel subunit 4.2 (pKv4.2). Intrathecal or intravenous administration of U0126 reduced VMR to CRD in NaB-treated rats and prevented increases in pERK1/2 and pKv4.2. Patch-clamp recordings of isolated DRG neurons showed that NaB caused a reduction in IA to 48.9%±1.4% of control and an increase in neuronal excitability, accompanied by a twofold increase in pERK1/2 and pKv4.2. Concurrent U0126 administration prevented these changes.

Conclusions: Visceral hypersensitivity induced by colonic NaB treatment is mediated by activation of the MAP kinase-ERK1/2 pathway, which phosphorylates Kv4.2. This results in a reduction in IA and an enhancement of DRG neuronal excitability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897301PMC
http://dx.doi.org/10.1136/gutjnl-2012-302260DOI Listing

Publication Analysis

Top Keywords

neuronal excitability
12
drg neurons
12
nab-treated rats
12
colonic hypersensitivity
8
mitogen-activated protein
8
dorsal root
8
rectal instillation
8
treated nab
8
intrathecal intravenous
8
intravenous administration
8

Similar Publications

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

The Primary Cilia are Associated with the Axon Initial Segment in Neurons.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.

The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!