Objective: Chronological age is a powerful epidemiologic risk factor for osteoarthritis (OA), a multifactorial disease that is characterized by articular cartilage (AC) degradation. It is unclear from a molecular perspective how aging interacts with OA to produce this risk to AC integrity. To address this key question, we used in vivo time-course analysis of OA development and murine interstrain variability in natural susceptibility to OA to examine changes in non-OA-prone CBA mice versus OA-prone STR/Ort mice, which develop disease that bears significant histologic resemblance to human OA. Through global transcriptome profiling, we attempted to discover the molecular signature linked with both OA vulnerability and progression.
Methods: Affymetrix Mouse Gene 1.0 ST Array profiles were generated from AC samples derived from CBA and STR/Ort mice at 3 different ages, corresponding to the stages prior to, at, and late after the natural onset of OA in the STR/Ort mice.
Results: We found that the OA in STR/Ort mice exhibited a molecular phenotype resembling human OA, and we pinpointed a central role of NF-κB signaling and the emergence of an immune-related signature in OA cartilage over time. We discovered that, strikingly, young healthy AC has a highly expressed skeletal muscle gene expression program, which is switched off during maturation, but is intriguingly retained in AC during OA development in STR/Ort mice.
Conclusion: This study is the first to show that AC chondrocytes share a high-abundance gene-expression program with skeletal muscle. We show that failure to switch this program off, as well as the restoration of this program, is associated with inappropriate expression of NF-κB signaling pathways, skeletal muscle-related genes, and induction and/or progression of OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.34572 | DOI Listing |
Bone Joint Res
December 2023
Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Aims: Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown.
View Article and Find Full Text PDFJBMR Plus
August 2023
Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate Livermore CA USA.
Post traumatic osteoarthritis (PTOA) is a form of secondary osteoarthritis (OA) that develops in ~50% of cases of severe articular joint injuries and leads to chronic and progressive degradation of articular cartilage and other joint tissues. PTOA progression can be exacerbated by repeated injury and systemic inflammation. Few studies have examined approaches for blunting or slowing down PTOA progression with emphasis on systemic inflammation; most arthritis studies focused on the immune system have been in the context of rheumatoid arthritis.
View Article and Find Full Text PDFPLoS One
June 2023
Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, Maine, United States of America.
Biomedicines
April 2023
Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age.
View Article and Find Full Text PDFArthritis Res Ther
April 2023
Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
Efforts to develop effective disease-modifying drugs to treat osteoarthritis have so far proved unsuccessful with a number of promising drug candidates from pre-clinical studies failing to show efficacy in clinical trials. It is therefore timely to re-evaluate our current understanding of osteoarthritis pathogenesis and the similarities and differences in disease development between commonly used pre-clinical mouse models and human patients. There is substantial heterogeneity between patients presenting with osteoarthritis and mounting evidence that the pathways involved in osteoarthritis (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!