The potential of radioimmunotherapy to selectively kill tumour cells is well established. However, optimisation is required with regards to increasing tumour localisation of antibodies. We used the PDGF-receptor inhibitor imatinib mesylate to improve tumour-specific antibody localisation in two models of colorectal adenocarcinoma and correlated antibody localisation with changes to tumour microvasculature. Mice bearing human colorectal xenografts (LS174T or SW1222) were treated with imatinib prior to administration of radiolabeled anti-CEA antibodies ((125)I-A5B7). Whole tumour and regional localisation of radiolabeled antibodies were measured. Microvessel density and pericyte coverage were quantified in whole tumours and correlated with (125)I-A5B7 localisation. Imatinib increased uptake of (125)I-A5B7 in LS174T but not SW1222 tumours after 48 h (p < 0.05). Imatinib reduced microvessel density in both models (p < 0.05) but reduced pericyte attachment to endothelial cells only in SW1222 xenografts (p < 0.05). Imatinib increases antibody distribution in LS174T tumours but not SW1222 tumours, and this correlated to changes in tumour microvessels. Accelerated clearance of radiolabeled antibody from normal tissues in both models resulted in enhanced tumour to normal tissue ratios. This improvement in tumour/normal tissue ratio has potential clinical benefit from a therapy and imaging perspective, and merits further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-012-0461-9DOI Listing

Publication Analysis

Top Keywords

radiolabeled antibody
8
antibody localisation
8
changes tumour
8
ls174t sw1222
8
microvessel density
8
tumours correlated
8
sw1222 tumours
8
005 imatinib
8
imatinib
6
tumour
6

Similar Publications

Article Synopsis
  • Positron Emission Tomography (PET) is a key imaging method in molecular medicine, enabling non-invasive visualization of biological processes at the molecular level.
  • Antibody-based PET imaging is becoming increasingly important for targeted disease detection and treatment.
  • The article discusses various antibody conjugation techniques, bioconjugation reactions, and new advancements in radiolabeling, aiming to enhance PET imaging for personalized medicine.
View Article and Find Full Text PDF

Breast cancer is the most frequent non-dermatologic malignancy in women. Breast cancer is characterized by the expression of the human epidermal growth factor receptor type 2 (HER2), and the presence or lack of estrogen receptor (ER) and progesterone receptor (PR) expression. HER2 overexpression is reported in about 20 to 25% of breast cancer patients, which is usually linked to cancer progression, metastases, and poor survival.

View Article and Find Full Text PDF

Background: Yttrium-90 FF-21101 (Y-FF-21101) is a radiopharmaceutical that targets P-cadherin as a therapy against solid tumors. A previously reported, first-in-human study determined that a dose of 25 mCi/m was safe, and a patient with clear cell carcinoma of the ovary achieved a complete response. In this article, the authors report the results of Y-FF-21101 treatment in an ovarian carcinoma expansion cohort and in patients with selected solid tumors who had known high P-cadherin expression.

View Article and Find Full Text PDF

Purpose: CD38 is a glycoprotein highly specific to multiple myeloma (MM). Therapeutics using antibodies targeting CD38 have shown promising efficacy. However, the efficient stratification of patients who may benefit from daratumumab (Dara) therapy and timely monitoring of therapeutic responses remain significant clinical challenges.

View Article and Find Full Text PDF

Radiometal chelator conjugation is a cornerstone of radioimmunotherapy (RIT). Continued interest in selective placement of chelators remains an active topic of discussion in the field. With several simple site-specific methods being recently reported, it was of interest to investigate the benefits and potential drawbacks of the site-specific method with a full comparison to a more typical random conjugation method that is currently utilized in clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!