Desiccation-induced non-radiative dissipation in isolated green lichen algae.

Photosynth Res

Botanical Institute, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.

Published: September 2012

Lichens are able to tolerate almost complete desiccation and can quickly resume metabolic activity after rehydration. In the desiccated state, photosynthesis is completely blocked and absorbed excitation energy cannot be used for electron transport, leading to a potential strong vulnerability for high light damage. Although desiccation and high insolation often occur simultaneously and many lichens colonize exposed habitats, these organisms show surprisingly little photodamage. In the desiccated state, variable chlorophyll fluorescence is lost, indicating a suspension of charge separation in photosystem II. At the same time, basal fluorescence (F (0)) is strongly quenched, which has been interpreted as an indication for high photoprotective non-radiative dissipation (NRD) of absorbed excitation energy. In an attempt to provide evidence for a photoprotective function of NRD in the desiccated state, isolated green lichen algae of the species Coccomyxa sp. and Trebouxia asymmetrica were used as experimental system. In contrast to experiments with intact lichens this system provided high reproducibility of the data without major optical artifacts on desiccation. The presence of 5 mM trehalose during desiccation had no effect but culture of the algae in seawater enhanced F (0) quenching in T. asymmetrica together with a reduced depression of F (V)/F (M) after high light treatment. While this effect could not be induced using artificial seawater medium lacking trace elements, the addition of ZnCl(2) and NaI in small amounts to the normal growth medium led to qualitatively and quantitatively identical results as with pure seawater. It is concluded that NRD indicated by F (0) quenching is photoprotective. The formation of NRD in lichen algae is apparently partially dependent on the presence of specific micronutrients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-012-9771-4DOI Listing

Publication Analysis

Top Keywords

lichen algae
12
desiccated state
12
non-radiative dissipation
8
isolated green
8
green lichen
8
absorbed excitation
8
excitation energy
8
high light
8
high
5
desiccation-induced non-radiative
4

Similar Publications

Allelopathic influence of usnic acid on Physcomitrium patens: A proteomics approach.

Plant Physiol Biochem

December 2024

Department of Plant Biology, Pavol Jozef Šafárik University in Košice, Mánesova 1889/23, 040 01, Košice, Slovakia. Electronic address:

Allelopathy, the chemical interaction of plants by their secondary metabolites with surrounding organisms, profoundly influences their functional features. Lichens, symbiotic associations of fungi and algae and/or cyanobacteria, produce diverse secondary metabolites, among other usnic acid, which express to have potent biological activities. Mosses, i.

View Article and Find Full Text PDF

Unicellular green algae of the genus Coccomyxa are recognized for their worldwide distribution and ecological versatility. Coccomyxa elongata is a freshwater species of the Coccomyxa simplex clade, which also includes lichen symbionts. To facilitate future molecular and phylogenomic studies of this versatile clade of algae, we generated a high-quality genome assembly for Coccomyxa elongata Chodat & Jaag SAG 216-3b within the framework of the Biodiversity Genomics Center Cologne (BioC2) initiative.

View Article and Find Full Text PDF

Analyzing sorbitol biosynthesis using a metabolic network flux model of a lichenized strain of the green microalga .

Microbiol Spectr

January 2025

Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra, Australia.

a unicellular terrestrial microalga found either free-living or in association with lichenized fungi, protects itself from desiccation by synthesizing and accumulating low-molecular-weight carbohydrates such as sorbitol. The metabolism of this algal species and the interplay of sorbitol biosynthesis with its growth, light absorption, and carbon dioxide fixation are poorly understood. Here, we used a recently available genome assembly for to develop a metabolic flux model and analyze the alga's metabolic capabilities, particularly, for sorbitol biosynthesis.

View Article and Find Full Text PDF

From rock to living systems: Lanthanides toxicity and biological interactions.

Ecotoxicol Environ Saf

January 2025

The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania.

Since the discovery of lanthanides, the expanding range of applications and the growing demand for lanthanides in different aspects of life have escalated their dispersion in the environment, raising concerns about their impact on the living world. This review explores the interaction between lanthanides and different groups of living organisms (bacteria, algae, lichens, plants, invertebrates, and low vertebrates), reflecting the current state of scientific knowledge. We have aimed to provide a comprehensive overview of relevant studies, highlight existing gaps, and suggest potential areas for future research to enhance the understanding of this topic.

View Article and Find Full Text PDF

Premise: Southern Africa is a biodiversity hotspot rich in endemic plants and lichen-forming fungi. However, species-level data about lichen photobionts in this region are minimal. We focused on Trebouxia (Chlorophyta), the most common lichen photobiont, to understand how southern African species fit into the global biodiversity of this genus and are distributed across biomes and mycobiont partners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!