A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neuroprotective effects of new protein kinase C activator TPPB against Aβ₂₅₋₃₅ induced neurotoxicity in PC12 cells. | LitMetric

Alzheimer's disease (AD) is pathologically characterized by presence of senile plaques in the hippocampus, which are composed mainly of extracellular deposition of a polypeptide known as the beta amyloid, the Aβ. It has been demonstrated on numerous occasions that it was the deposition and aggregation of this Aβ peptide that cause neuronal dysfunction and even finally, the dementia. Lowering the deposition of Aβ or decreasing its neurotoxicity has long been one of the purposes of AD therapy. In previous study, we reported that protein kinase C (PKC) activator TPPB could regulate APP processing by increasing α-secretase activity. In this study we further investigated the potential neuroprotective effect of TPPB against Aβ(25-35)-induced neurotoxicity in PC12 cells. The results indicated that TPPB at concentration of 1 μM could antagonize Aβ(25-35) induced cell damage as evidenced by MTT assays, LDH release and by morphological changes. Furthermore, the neuroprotection in cell viability can be blocked by inhibitors of PKC, Akt and MAPK. The experiment also indicated that TPPB could increase the phosphorylation of Akt, PKC, MARCKS and MAPK, which were inhibited by Aβ(25-35) treatment. Finally, TPPB inhibited the activation of caspase-3 induced by Aβ(25-35). Taken together, the experiment here implies that TPPB has a role against Aβ(25-35)-induced neurotoxicity in PC12 cells and may suggest its therapeutic potential in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-012-0846-6DOI Listing

Publication Analysis

Top Keywords

neurotoxicity pc12
12
pc12 cells
12
protein kinase
8
activator tppb
8
aβ25-35-induced neurotoxicity
8
indicated tppb
8
tppb
7
neuroprotective effects
4
effects protein
4
kinase activator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!