Water samples from selected locations of Nullah Lai and Koh-e-Noor textile mill in the metropolitan city of Rawalpindi and Islamabad, Pakistan, were collected. Physicochemical parameters and heavy metals were determined using standard analytical procedures in comparison with sites, locations and subsequent interval of 3 months. The results of the physicochemical analysis at different locations of Nullah Lai and Koh-e-Noor textile mill with an interval of 3 months were obtained in the following range: pH (7.16-8.29), temperature (17.8-28.8 °C), conductivity (1,005-3,347 μS/m), TDS (754.3-2,519.5 mg/L), turbidity (272.8-487.05 NTU), total hardness (300-452 mg/L), nitrates (10.11-22.95 ppm), calcium (74.31-139.2 ppm), chloride (127.72-396.16 ppm), sulphate (15.97-87.38 ppm), NaCl (210.5-631.1 ppm), Ni (0.30-0.72 ppm), Cd (0.005-0.03 ppm), Cr (0.2-7.4 ppm), Pb (0.12-0.73 ppm), Zn (0.03-0.08 ppm) and Cu (0.01-0.06 ppm). The highest value of physicochemical parameters (compared with Nullah Lai) was obtained in locations of Koh-e-Noor textile mill. The results obtained exceeded the maximum allowable limit set by the World Health Organization for drinking purpose but can be used for irrigation purposes after suitable treatment and purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-012-2727-5 | DOI Listing |
Front Nutr
January 2025
Department of Plant and Animal Production, Vocational College of Technical Sciences, Atatürk University, Erzurum, Türkiye.
Objectives: The objective of this study was to investigate the effects of the addition of L. (coriander) on the physicochemical, sensory, textural and microbiological properties of yogurt.
Methods: To conduct this study, 4 types of yogurt were prepared as control (C0) and with 1% (C1), 2% (C2) and 3% (C3) coriander, and the yogurts were analyzed on specific storage days.
Langmuir
January 2025
Department of Chemical Engineering, Technion-IIT, Haifa 32000, Israel.
A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid.
View Article and Find Full Text PDFSci Rep
January 2025
Department of GIS-RS and Nature Resources, Maybod Branch, Islamic Azad University, Yazd, Iran.
One of the major problems facing the water industry is corrosion and sedimentation, which causes problems such as reduced water quality and the useful life of water supply network equipment. This study aimed to investigate the corrosion and sediments formed in the drinking water distribution network of Sough City. In this cross-sectional study, samples were prepared from 7 wells, water storage reservoirs, and a dedicated water supply network in this area from 2006 to 2017.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!