Purpose Of Review: Deep sequencing of the V3 region of the HIV envelope gene can detect minority non-R5 variants in patients with high sensitivity and specificity. As next-generation sequencing approaches have matured, the clinical utility of deep sequencing for HIV tropism has entered the clinic. Accurate and sensitive tropism testing is essential for successful treatment with the CCR5 antagonist class of antiretrovirals.

Recent Findings: This review will focus on five aspects of next-generation sequencing for assessing HIV tropism: some background on the necessity of deep sequencing versus other tropism methods; the methodological process of 454 sequencing and analysis; other next-generation sequencing technologies; the diagnostic performance of deep sequencing relative to other tropism assays; and the use of deep sequencing in clinical practice.

Summary: This method has emerged quickly as both a research and clinical tool because of its high concordance with commonly used phenotypic tropism assays and its ability to predict virological response to CCR5 antagonist-containing regimens.

Download full-text PDF

Source
http://dx.doi.org/10.1097/COH.0b013e328356e9daDOI Listing

Publication Analysis

Top Keywords

deep sequencing
20
next-generation sequencing
16
hiv tropism
12
sequencing
9
tropism assays
8
tropism
7
deep
5
next-generation
4
sequencing assess
4
hiv
4

Similar Publications

The COVID-19 pandemic has underscored the importance of virus surveillance in public health and wastewater-based epidemiology (WBE) has emerged as a non-invasive, cost-effective method for monitoring SARS-CoV-2 and its variants at the community level. Unfortunately, current variant surveillance methods depend heavily on updated genomic databases with data derived from clinical samples, which can become less sensitive and representative as clinical testing and sequencing efforts decline.In this paper, we introduce HERCULES (High-throughput Epidemiological Reconstruction and Clustering for Uncovering Lineages from Environmental SARS-CoV-2), an unsupervised method that uses long-read sequencing of a single 1 Kb fragment of the Spike gene.

View Article and Find Full Text PDF

With the development of next-generation sequencing (NGS) technologies it became possible to simultaneously analyze millions of variants. Despite the quality improvement, it is generally still required to confirm the variants before reporting. However, in recent years the dominant idea is that one could define the quality thresholds for "high quality" variants which do not require orthogonal validation.

View Article and Find Full Text PDF

scATAC-seq generates more accurate and complete regulatory maps than bulk ATAC-seq.

Sci Rep

January 2025

MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.

Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.

View Article and Find Full Text PDF

The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.

View Article and Find Full Text PDF

Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 6 (L6) and susceptible Line 7 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!