Control of the immune system by oxysterols and cancer development.

Curr Opin Pharmacol

Cancer Therapy, MolMed SpA, Via Olgettina 58, Milan, Italy.

Published: December 2012

Oxysterols/oxysterol receptors have been shown to modulate several immune cell subsets, such as macrophages, T-cells and B-cells, neutrophils and dendritic cells (DCs). They participate in the control of several pathologic processes, that is, infectious diseases, atherosclerosis and autoimmunity. Moreover, some oxysterols have also been shown to favor tumor progression by dampening the antitumor immune response. The cellular responses generated by oxysterols depend on the engagement of Liver X Receptor (LXR) α and/or β isoforms, which induce activation of target genes or trans-repression of pro-inflammatory gene transcription. Recently, some reports have described a different mechanism of action of oxysterols, mediated by the engagement of G-Protein Coupled Receptors. Here, we summarize LXR-dependent and LXR-independent responses of oxysterols on immune cells with possible effects on tumor development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2012.07.003DOI Listing

Publication Analysis

Top Keywords

oxysterols
5
control immune
4
immune system
4
system oxysterols
4
oxysterols cancer
4
cancer development
4
development oxysterols/oxysterol
4
oxysterols/oxysterol receptors
4
receptors modulate
4
modulate immune
4

Similar Publications

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Acid sphingomyelinase deficiency (ASMD) is a rare, progressive lysosomal storage disorder resulting from a deficiency in acid sphingomyelinase, leading to sphingomyelin accumulation and multi-organ damage. ASMD presents a broad phenotypic spectrum with a continuum of severity, making it challenging to predict the phenotype in very young children and differentiate between acute and chronic neurovisceral disease. No disease-specific treatments existed for ASMD.

View Article and Find Full Text PDF

Oxysterols, as metabolites of cholesterol, play a key role in cholesterol homeostasis, autophagosome formation, and regulation of immune responses. Disorders in oxysterol metabolism are closely related to the pathogenesis of neurodegenerative diseases. To systematically investigate the profound molecular regulatory mechanisms of neurodegenerative diseases, it is necessary to quantify oxysterols and their metabolites in central and peripheral biospecimens simultaneously and accurately.

View Article and Find Full Text PDF

The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment.

Biochim Biophys Acta Mol Cell Res

January 2025

School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:

Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles.

View Article and Find Full Text PDF

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!