Background/aims: The extracellular calcium-sensing receptor (CaR) is expressed in pancreatic β-cells where it is thought to facilitate cell-to-cell communication and augment insulin secretion. However, it is unknown how CaR activation improves β-cell function.

Methods: Immunocytochemistry and western blotting confirmed the expression of CaR in MIN6 β-cell line. The calcimimetic R568 (1µM) was used to increase the affinity of the CaR and specifically activate the receptor at a physiologically appropriate extracellular calcium concentration. Incorporation of 5-bromo-2'-deoxyuridine (BrdU) was used to measure cell proliferation, whilst changes in non-nutrient-evoked cytosolic calcium were assessed using fura-2-microfluorimetry. AFM-single-cell-force spectroscopy related CaR-evoked changes in epithelial (E)-cadherin expression to improved functional tethering between coupled cells.

Results: Activation of the CaR over 48hr doubled the expression of E-cadherin (206±41%) and increased L-type voltage-dependent calcium channel expression by 70% compared to control. These changes produced a 30% increase in cell-cell tethering and elevated the basal-to-peak amplitude of ATP (50µM) and tolbutamide (100µM)-evoked changes in cytosolic calcium. Activation of the receptor also increased PD98059 (1-100µM) and SU1498 (1-100µM)-dependent β-cell proliferation.

Conclusion: Our data suggest that activation of the CaR increases E-cadherin mediated functional tethering between β-cells and increases expression of L-type VDCC and secretagogue-evoked changes in [Ca(2+)](i). These findings could explain how local changes in calcium, co-released with insulin, activate the CaR on neighbouring cells to help ensure efficient and appropriate secretory function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000341439DOI Listing

Publication Analysis

Top Keywords

calcium-sensing receptor
8
cytosolic calcium
8
functional tethering
8
activation car
8
car
7
changes
6
activation
5
expression
5
calcium
5
receptor activation
4

Similar Publications

Neonatal severe hyperparathyroidism with inactivating calcium sensing receptor (CaSR) mutation (p.I81K).

J Pediatr Endocrinol Metab

January 2025

Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Türkiye.

Objectives: Neonatal severe hyperparathyroidism (NSHPT) is a rare condition characterized by inactivating mutations in the calcium-sensing receptor () gene, leading to significant hypercalcemia and related complications.

Case Presentation: We present a case of a six-day-old male infant with weakness, jaundice, and hypotonia, later diagnosed with NSHPT due to a known homozygous mutation (c.242T>A; p.

View Article and Find Full Text PDF

Background: The parathyroid calcium-sensing receptor (CASR) controls the release of parathyroid hormone (PTH) in response to changes in serum calcium levels. Activation of the renal CASR increases urinary calcium excretion and is particularly important when CASR-dependent reductions in PTH fail to lower serum calcium. However, the role of the renal CASR in protecting against hypercalcemia and the direct effects of chronic CASR activation on tubular calcium handling remains to be fully elucidated.

View Article and Find Full Text PDF

Backgrounds: The pathophysiology of nephrolithiasis is complex, influenced by both environmental and genetic factors. Calcium is the most prevalent metabolite present in the stone matrix. Stimulating the basolateral calcium sensing receptor (CASR) in the renal tubules leads to an increase in claudin-14 expression, reducing paracellular calcium permeability and increasing urinary Ca excretion.

View Article and Find Full Text PDF

Comparing the efficacy of serotonin and EGTA on postpartum hypocalcemia.

J Dairy Sci

January 2025

Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53701. Electronic address:

Inducing a transient state of hypocalcemia prepartum mobilizes stored calcium (Ca) before the abrupt demand for Ca at parturition thus more tightly regulating postpartum hypocalcemia. Prepartum transient hypocalcemia can be achieved through intravenous infusions of either the precursor to serotonin, 5-hydroxy-tryptophan (5HTP) or a Ca chelating agent, ethylene-glycol-tetraacetic acid (EGTA). This study aimed to compare the ability of 5HTP and EGTA treatments to prevent postpartum hypocalcemia.

View Article and Find Full Text PDF

Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!