The testes of 40-day-old rats subjected to protein malnutrition show a marked delay in maturation of the seminiferous epithelium, as well as greater mannose incorporation into glycoprotein than observed in normal animals of the same age. Testes were incubated for 1 h with [2-3H]mannose and germ cells were then separated by the Staput method. Mannose incorporation occurred in the same cell fraction, i.e. the spermatocytes, both in normally fed and protein-undernourished animals. These data were confirmed by incubating the cells previously isolated on the gradient with [2-3H]mannose. Comparison of these data with results obtained in previous studies on 20-day-old animals in which mannose incorporation was lower in undernourished rats suggests that the differences observed in the present study between the experimental groups are due to alterations in the germ cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2605.1990.tb01047.xDOI Listing

Publication Analysis

Top Keywords

mannose incorporation
12
testes 40-day-old
8
40-day-old rats
8
rats subjected
8
subjected protein
8
protein malnutrition
8
germ cells
8
glycoprotein biosynthesis
4
biosynthesis testes
4
malnutrition testes
4

Similar Publications

Molecular Design, Synthesis and Anti-cancer Activity of Novel Pyrazolo[3,4-b]pyridine-based Glycohybrid Molecules.

Bioorg Chem

January 2025

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Molecular hybridization is an emerging strategy in medicinal chemistry for designing new bioactive molecules that link pharmacophores covalently and shows synergistic enhanced properties. Herein, we have developed pyrazolo[3,4-b]pyridine-based new glycohybrids considering the Warburg effect. A microwave-assisted, copper-catalyzed efficient synthesis of new triazole-linked glycohybrids based on pyrazolo[3,4-b]pyridines scaffold was achieved successfully in high yields with inherent stereochemical diversity from d-glucose, d-galactose, and d-mannose.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) is a multifactorial disease, and the risk of contracting infection is determined by the complex interplays between environmental and host-related factors. While research has shown that certain individuals may have a genetic predisposition for PJI, the existing literature is scarce, and the heterogeneity in the assessed genes limits its clinical applicability. Our review on genetic susceptibility for PJI has the following two objectives: (1) Explore the potential risk of developing PJI based on specific genetic polymorphisms or allelic variations; and (2) Characterize the regulatory cascades involved in the risk of developing PJI.

View Article and Find Full Text PDF

Convergence of plant sterols and host eukaryotic cell-derived defensive lipids at the infectious pathogen-host interface.

Biochimie

December 2024

Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103, Kiel, Germany.

Plant sterols (PSs) exhibit intrinsic functions such as antibacterial effects. Their effects simultaneously on both host-mediated and bacteria-mediated pathogenesis are not yet fully understood. We hypothesized that when absorptive cells, defensive cells and detoxer cells are cultured together, their convergent response to an infectious pathogen depends on the molecular mimicry between the ingested sterols and their own defensive lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!