Purpose: The feasibility and safety of magnetic resonance imaging (MRI)-controlled transurethral ultrasound therapy were demonstrated recently in a preliminary human study in which a small subvolume of prostate tissue was treated prior to radical prostatectomy. Translation of this technology to full clinical use, however, requires the capability to generate thermal coagulation in a volume up to that of the prostate gland itself. The aim of this study was to investigate the parameters required to treat a full 3D human prostate accurately with a multi-element transurethral applicator and multiplanar MR temperature control.

Methods: The approach was a combination of simulations (to select appropriate parameters) followed by experimental confirmation in tissue-mimicking phantoms. A ten-channel, MRI-compatible transurethral ultrasound therapy system was evaluated using six human prostate models (average volume: 36 cm(3)) obtained from the preliminary human feasibility study. Real-time multiplanar MR thermometry at 3 T was used to control the spatial heating pattern in up to nine planes simultaneously. Treatment strategies incorporated both single (4.6 or 8.1 MHz) and dual (4.6 and 14.4 MHz) frequencies, as well as maximum acoustic surface powers of 10 or 20 W cm(-2).

Results: Treatments at 4.6 MHz were capable of coagulating a volume equivalent to 97% of the prostate. Increasing power from 10 to 20 W cm(-2) reduced treatment times by approximately 50% with full treatments taking 26 ± 3 min at a coagulation rate of 1.8 ± 0.4 cm(3) min(-1). A dual-frequency 4.6∕14.4 MHz treatment strategy was shown to be the most effective configuration for achieving full human prostate treatment while maintaining good treatment accuracy for small treatment radii. The dual-frequency approach reduced overtreatment close to the prostate base and apex, confirming the simulations.

Conclusions: This study reinforces the capability of MRI-controlled transurethral ultrasound therapy to treat full prostate volumes in a short treatment time with good spatial targeting accuracy and provides key parameters necessary for the next clinical trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412433PMC
http://dx.doi.org/10.1118/1.4730288DOI Listing

Publication Analysis

Top Keywords

human prostate
16
transurethral ultrasound
16
ultrasound therapy
16
mri-controlled transurethral
12
prostate
9
prostate volumes
8
preliminary human
8
treat full
8
full human
8
treatment
7

Similar Publications

Prostate cancer is the most common type after the age of fifty. It affects males and affects the prostate gland, which protects the function of sperm by producing semen. The current study was designed to evaluate prostate cancer infection effects on some biomarkers such as irisin, Tumor necrosis factor-TNF-α, prostate acid phosphates -PAP, Glutathione-GSH, malondialdehyde-MDA, urea, and creatinine.

View Article and Find Full Text PDF

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Background And Purpose: Cancer is one of the most prevalent diseases in the general population, and is one of the main causes of changes in the population's illness profile. In this study, we assessed changes in the functional status and quality of life of patients in the first months of chemotherapy treatment.

Method: A prospective cohort study was carried out, collecting data from cancer patients seen at an outpatient clinic in the Midwest of Santa Catarina who had breast, lung, colon and rectum, prostate and head and neck cancer.

View Article and Find Full Text PDF

Clinical advances of mRNA vaccines for cancer immunotherapy.

Med

January 2025

Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!