Broadband dielectric spectroscopy spanning frequencies from 10(-2) to 1.9 × 10(9) Hz has been used to study the molecular orientational dynamics of the glass-forming liquid crystal 1",7"-bis (4-cyanobiphenyl-4'-yl)heptane (CB7CB) over a wide temperature range of the twist-bend nematic phase. In such a mesophase two different relaxation processes have been observed, as expected theoretically, to contribute to the imaginary part of the complex dielectric permittivity. For measurements on aligned samples, the processes contribute to the dielectric response to different extents depending on the orientation of the alignment axis (parallel or perpendicular) with respect to the probing electric field direction. The low-frequency relaxation mode (denoted by μ(1)) is attributed to a flip-flop motion of the dipolar groups parallel to the director. The high-frequency relaxation mode (denoted by μ(2)) is associated with precessional motions of the dipolar groups about the director. The μ(1)-and μ(2)-modes are predominant in the parallel and perpendicular alignments, respectively. Relaxation times for both modes in the different alignments have been obtained over a wide temperature range down to near the glass transition temperature. Different analytic functions used to characterize the temperature dependence of the relaxation times of the two modes are considered. Among them, the critical-like description via the dynamic scaling model seems to give not only quite good numerical fittings, but also provides a consistent physical picture of the orientational dynamics on approaching the glass transition.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4733561DOI Listing

Publication Analysis

Top Keywords

glass transition
12
twist-bend nematic
8
liquid crystal
8
orientational dynamics
8
wide temperature
8
temperature range
8
parallel perpendicular
8
relaxation mode
8
mode denoted
8
dipolar groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!