Objective: This laboratory study compared the repaired microtensile bond strengths of aged silorane resin composite using different surface treatments and either silorane or methacrylate resin composite.
Methods: One hundred eight silorane resin composite blocks (Filtek LS) were fabricated and aged by thermocycling between 8°C and 48°C (5000 cycles). A control (solid resin composite) and four surface treatment groups (no treatment, acid treatment, aluminum oxide sandblasting, and diamond bur abrasion) were tested (N=12 blocks, 108 beams/group). Each treatment group was randomly divided in half and repaired with either silorane resin composite (LS adhesive) or methacrylate resin composite (Filtek Z250/Single Bond Plus). After 24 hours in 37°C distilled water, microtensile bond strength testing was performed using a non-trimming technique. Surface topography after surface treatment was analyzed using scanning electron microscopy (SEM). Failure mode was examined using optical microscopy (50×).
Results: Weibull-distribution survival analysis revealed that aluminum oxide sandblasting followed by silorane or methacrylate resin composite and acid treatment with methacrylate resin composite provided insignificant differences from the control (p>0.05). All other groups were significantly lower than the control. Failure was primarily adhesive in all groups.
Conclusion: Aluminum oxide sandblasting produced microtensile bond strength not different from the cohesive strength of silorane resin composite. After aluminum oxide sandblasting, aged silorane resin composite can be repaired with either silorane resin composite with LS system adhesive or methacrylate resin composite with methacrylate dental adhesive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2341/11-057-L | DOI Listing |
J Prosthet Dent
January 2025
Professor, Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil. Electronic address:
Statement Of Problem: Staining at the gingival margin could impact denture longevity, but the behavior of gingival colored composite resins (GCCs) in this area remains unclear.
Purpose: This in vitro study evaluated surface staining, microleakage, and push-out bond strength at the gingival margin of artificial teeth, comparing two consistencies of GCCs with two resin base materials.
Material And Methods: Specimens included artificial teeth (Ivostar; Ivoclar AG) and two acrylic resin base materials: conventional (Ondacryl; Clássico) and high-impact (Diamond D; Keystone Industries) (n=300).
Contemp Clin Dent
December 2024
Department of Pediatric and Preventive Dentistry, GDC, Dibrugarh, Assam, India.
Regenerative endodontic therapy (RET) of young permanent teeth with necrotic pulps and apical periodontitis in young people, deciduous tooth pulp may be utilized as a natural, biologic scaffold. Recent developments in stem cell biology and material sciences are beneficial for new treatment methods. Previously traumatized and necrotic young permanent tooth was treated with RET protocol.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry, Department of Restorative Dentistry, Gazi University, Bişkek St. 1. St. Number: 8 Emek, Ankara, Turkey.
Background: Repairing composite resins is a less invasive alternative to complete restoration replacement. To achieve a successful bond between the existing and newly applied composite materials, various surface preparation methods, such as sandblasting and acid etching, have been explored. The aim of the study was to evaluate the effect of different surface treatments on the repair bond strength of a universal nanohybrid composite resin restorative material before and after thermal aging, by utilizing a micro-shear bond strength (µSBS) test.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Advanced Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Purpose: This study was aimed at investigating the thermal stresses in monolithic zirconia crowns (MZC) of various thicknesses and elucidating their thermal behavior under cooling or heating changes in the oral cavity. Additionally, the clinical availability and potential issues of MZC were examined by comparing them with other crown materials.
Methods: Finite element models comprising MZC (0.
J Dent
January 2025
University of Saskatchewan, College of Dentistry. 107 Wiggins Rd, Saskatoon, SK, Canada. S7N 5E5. Electronic address:
Bulk-fill, monochromatic, and ORMOCER composites were introduced in restorative dentistry with the aim of reducing clinical time and/or alleviating contraction stresses at the interface between the tooth and restoration. While the conversion and immediate properties of these materials are comparable to conventional composites, studies evaluating their long-term properties and the structure of the polymer matrix are lacking. The objective of this study was to evaluate the degree of conversion and, indirectly, the crosslink density of conventional, bulk-fill, monochromatic, and ORMOCER resin composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!