NOD2, the nucleotide-binding domain and leucine-rich repeat containing gene family (NLR) member 2 is involved in mediating antimicrobial responses. Dysfunctional NOD2 activity can lead to severe inflammatory disorders, but the regulation of NOD2 is still poorly understood. Recently, proteins of the tripartite motif (TRIM) protein family have emerged as regulators of innate immune responses by acting as E3 ubiquitin ligases. We identified TRIM27 as a new specific binding partner for NOD2. We show that NOD2 physically interacts with TRIM27 via the nucleotide-binding domain, and that NOD2 activation enhances this interaction. Dependent on functional TRIM27, ectopically expressed NOD2 is ubiquitinated with K48-linked ubiquitin chains followed by proteasomal degradation. Accordingly, TRIM27 affects NOD2-mediated pro-inflammatory responses. NOD2 mutations are linked to susceptibility to Crohn's disease. We found that TRIM27 expression is increased in Crohn's disease patients, underscoring a physiological role of TRIM27 in regulating NOD2 signaling. In HeLa cells, TRIM27 is partially localized in the nucleus. We revealed that ectopically expressed NOD2 can shuttle to the nucleus in a Walker A dependent manner, suggesting that NOD2 and TRIM27 might functionally cooperate in the nucleus.We conclude that TRIM27 negatively regulates NOD2-mediated signaling by degradation of NOD2 and suggest that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400628PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041255PLOS

Publication Analysis

Top Keywords

nod2
13
trim27
11
trim27 negatively
8
negatively regulates
8
proteasomal degradation
8
degradation nod2
8
nucleotide-binding domain
8
ectopically expressed
8
expressed nod2
8
crohn's disease
8

Similar Publications

Knockdown of GSDMD inhibits pyroptosis in psoriasis by blocking the NOD-like receptor signaling pathway.

Int Immunopharmacol

January 2025

Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:

Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.

Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.

View Article and Find Full Text PDF

Problem: Aging alters immune function in women and can lead increased risk of infections, particularly in the female reproductive tract (FRT).

Method Of Study: To determine how aging affects innate immune responses in the cervical stroma of the FRT, we isolated endocervical (CX) and ectocervical (ECX) stromal fibroblasts and determine if their expression of multiple pattern recognition receptors (PRRs) and responses to viral stimulation varied with menopause and age.

Results: Constitutive expression of most PRRs did not vary with age or menopausal status in either cell type.

View Article and Find Full Text PDF

Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with various contributing factors. Understanding the molecular mechanisms underlying PCOS is essential for developing effective treatments. This study aimed to identify hub genes and investigate potential molecular mechanisms associated with PCOS through a combination of bioinformatics analysis and Mendelian randomization (MR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!