A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of a novel pathway of transforming growth factor-β1 regulation by extracellular NAD+ in mouse macrophages: in vitro and in silico studies. | LitMetric

Extracellular β-nicotinamide adenine dinucleotide (NAD(+)) is anti-inflammatory. We hypothesized that NAD(+) would modulate the anti-inflammatory cytokine Transforming Growth Factor (TGF)-β1. Indeed, NAD(+) led to increases in both active and latent cell-associated TGF-β1 in RAW 264.7 mouse macrophages as well as in primary peritoneal macrophages isolated from both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) mice. NAD(+) acts partially via cyclic ADP-ribose (cADPR) and subsequent release of Ca(2+). Treatment of macrophages with the cADPR analog 3-deaza-cADPR or Ca(2+) ionophores recapitulated the effects of NAD(+) on TGF-β1, whereas the cADPR antagonist 8-Br-cADPR, Ca(2+) chelation, and antagonism of L-type Ca(2+) channels suppressed these effects. The time and dose effects of NAD(+) on TGF-β1 were complex and could be modeled both statistically and mathematically. Model-predicted levels of TGF-β1 protein and mRNA were largely confirmed experimentally but also suggested the presence of other mechanisms of regulation of TGF-β1 by NAD(+). Thus, in vitro and in silico evidence points to NAD(+) as a novel modulator of TGF-β1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438933PMC
http://dx.doi.org/10.1074/jbc.M112.344309DOI Listing

Publication Analysis

Top Keywords

nad+
9
transforming growth
8
mouse macrophages
8
vitro silico
8
tgf-β1 nad+
8
effects nad+
8
nad+ tgf-β1
8
tgf-β1
7
identification novel
4
novel pathway
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!