Dramatic fluorescence enhancement of bare carbon dots through facile reduction chemistry.

Chemphyschem

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China.

Published: October 2012

Reduction of bare carbon dots (CDs) in aqueous NaBH(4) solution is a facile and effective approach to enhance their fluorescence without any surface coverage. CDs are treated with dilute aqueous NaBH(4) solutions, enhancing their quantum yields (QYs) successfully from 1.6 % to 16 % which is comparable to semiconductive QDs in aqueous environments. If pristine CDs are treated hydrothermally prior to reduction by NaBH(4), QYs reach 40.5 %. This value is among the highest QYs reported for bare CDs in the literature. The approach to enhance fluorescence through chemical reduction is generally applicable to other kinds of CDs synthesized by various methods. Alteration of the chemical structure of the CDs by NaBH(4)-reduction is analyzed by (13) C NMR, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, which demonstrate that the carbonyl group content is decreased after NaBH(4)-reduction, whereas the number of sp(3)-type carbon defects is increased. The valence-band maxima (VBM) near the surface related to the surface energy bands of the CDs are estimated by XPS. VBM data show a semiconducting layer on the surface of the CDs, and the VBM of the CDs decrease with increasing NaBH(4)-reduction time. The layered graphite structures in the cores of the CDs are clearly observed by transmission electron microscopy (TEM). CDs could perhaps be regarded as semiconductive surface defect layers formed by chemical erosion over conductive graphite cores. Chemical reduction by NaBH(4) changes the surface-energy bands of the CDs, thus, enhances their fluorescence. The fluorescence properties of aqueous NaBH(4)-reduced CDs are also studied for possible biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201200018DOI Listing

Publication Analysis

Top Keywords

cds
13
bare carbon
8
carbon dots
8
aqueous nabh4
8
approach enhance
8
enhance fluorescence
8
cds treated
8
reduction nabh4
8
chemical reduction
8
bands cds
8

Similar Publications

Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy.

View Article and Find Full Text PDF

Purpose: We aimed to determine whether implementation of clinical decision support (CDS) tool integrated into the electronic health record (EHR) of a multi-site academic medical center increased the proportion of patients with American Urological Association (AUA) "high risk" microscopic hematuria (MH) who receive guideline concordant evaluations.

Materials And Methods: We conducted a two-arm cluster randomized quality improvement project in which 202 ambulatory sites from a large health system were randomized to either have their physicians receive at time of test results an automated CDS alert for patients with 'high-risk' MH with associated recommendations for imaging and cystoscopy (intervention) or usual care (control). Primary outcome was met if a patient underwent both imaging and cystoscopy within 180 days from MH result.

View Article and Find Full Text PDF

Internal Nanocavity Regulation of Embedded Rare Earth Up-Conversion Nanoparticles for HO Production Operable at Up to 780 nm.

Small

January 2025

XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.

View Article and Find Full Text PDF

Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.

View Article and Find Full Text PDF

Research on Red/Near-Infrared Fluorescent Carbon Dots Based on Different Carbon Sources and Solvents: Fluorescence Mechanism and Biological Applications.

Nanomaterials (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.

Fluorescent carbon dots, especially red/near-infrared-emitting CDs, are becoming increasingly important in the field of biomedicine. This article reviews the synthesis, fluorescence mechanisms, and biological applications of R/NIR-CDs, emphasizing the importance of carbon source and solvent selection in controlling their optical properties. The formation process of CDs is classified, and the fluorescence mechanisms of CDs are summarized, involving carbon core states, surface states, molecular states, and cross-linking enhanced emission effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!