The low MR sensitivity of the sodium nucleus and its low concentration in the human body constrain acquisition time. The use of both single-quantum and triple-quantum sodium imaging is, therefore, restricted. In this work, we present a novel MRI sequence that interleaves an ultra-short echo time radial projection readout into the three-pulse triple-quantum preparation. This allows for simultaneous acquisition of tissue sodium concentration weighted as well as triple-quantum filtered images. Performance of the sequence is shown on phantoms. The method is demonstrated on six healthy informed volunteers and is applied to three cases of brain tumors. A comparison with images from tumor specific O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography and standard MR images is presented. The combined information of the triple-quantum-filtered images with single-quantum images may enable a better understanding of tissue viability. Future studies can benefit from the evaluation of both contrasts with shortened acquisition times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.24417 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!