The oxygen surface exchange kinetics of mixed conducting perovskite oxides SrTi(1-x)Fe(x)O(3-δ) (x = 0, 0.01, 0.05, 0.35, 0.5) has been investigated as a function of temperature and oxygen partial pressure using the pulse-response (18)O-(16)O isotope exchange (PIE) technique. Arrhenius activation energies range from 140 kJ mol(-1) for x = 0 to 86 kJ mol(-1) for x = 0.5. Extrapolating the temperature dependence to the intermediate temperature range, 500-600 °C, indicates that the rate of oxygen exchange, in air, increases with increasing iron mole fraction, but saturates at the highest iron mole fraction for the given series. The observed behavior is concomitant with corresponding increases in both electronic and ionic conductivity with increasing x in SrTi(1-x)Fe(x)O(3-δ). Including literature data of related perovskite-type oxides Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ), La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-δ), La(0.6)Sr(0.4)CoO(3-δ), and Sm(0.5)Sr(0.5)CoO(3-δ), a linear relationship is observed in the log-log plot between oxygen exchange rate and oxide ionic conductivity with a slope fairly close to unity, suggesting that it is the magnitude of the oxide ionic conductivity that governs the rate of oxygen exchange in these solids. The distribution of oxygen isotopomers ((16)O(2), (16)O(18)O, (18)O(2)) in the effluent pulse can be interpreted on the basis of a two-step exchange mechanism for the isotopic exchange reaction. Accordingly, the observed power law dependence of the overall surface exchange rate on oxygen partial pressure turns out to be an apparent one, depending on the relative rates of both steps involved in the adopted two-step scheme. Supplementary research is, however, required to elucidate which of the two possible reaction schemes better reflects the actual kinetics of oxygen surface exchange on SrTi(1-x)Fe(x)O(3-δ).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp41923h | DOI Listing |
ACS EST Air
January 2025
Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.
View Article and Find Full Text PDFNature
January 2025
Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.
View Article and Find Full Text PDFSci Rep
January 2025
College of New Energy and Environment, Jilin University, Changchun, 130012, China.
Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea. Electronic address:
The presence of cobalt ions (Co) and radionuclides (Co) in industrial and radioactive effluents pose serious threats to environmental ecosystems and human health. This paper presents the synthesis of dual-functional hydroxyapatite (HAp)-incorporated spherical carbon (SC) composite (HAp/SC) towards the selective adsorption of cobalt from wastewater and the utilization of the Co-adsorbed HAp/SC composite (Co- HAp/SC) as an electrocatalyst for the oxygen evolution reaction (OER). Herein, we prepared a series of HAp/SC composites by varying HAp weight percentages of 10 %, 20 %, 30 %, 40 %, and 50 %.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
The development of cost-effective point-of-use (POU) devices that effectively remove lead (Pb) from drinking water is imperative in mitigating the threat of Pb contamination to public health in underdeveloped regions. Herein, we have successfully transformed inexpensive natural kaolinite as hydroxy-sodalite (HySOD) via a simple hydrothermal process, achieving an impressive yield of 91.5 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!