As depression-like symptoms are often precipitated by some form of stress, animal models of stress have been used extensively to investigate cellular mechanisms of depression. Despite being implicated in the emotional symptoms of depression, the amygdala has received little attention compared to the hippocampus in the past studies of antidepressant action. Further, these investigations have not taken into account the contrasting effects of chronic stress on the hippocampus vs amygdala. If an antidepressant is to be equally effective in countering the differential effects of stress on both brain areas, then it is faced with the challenge of eliciting contrasting effects in these two structures. We tested this prediction by examining the impact of tianeptine, an antidepressant with proven clinical efficacy, on neurons of the lateral amygdala (LA) and hippocampal area CA1. Tianeptine reduces N-methyl-D-aspartate (NMDA)-receptor-mediated synaptic currents, without affecting α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) currents, in LA neurons. By contrast, tianeptine enhances both NMDA and AMPA currents in area CA1. Tianeptine also lowers action potential firing in LA neurons. As tianeptine modulates cellular metrics that, in addition to mediating amygdalar behavioral output, are also affected by stress, we tested if tianeptine succeeds in countering stress effects in the intact animal. We find that tianeptine prevents two important functional consequences of chronic stress-induced plasticity in the amygdala--dendritic growth and enhanced anxiety-like behavior. These results provide evidence for antidepressant action on amygdalar neurons that are not only distinct from the hippocampus, but also protect against the debilitating impact of stress on amygdalar structure and function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473336 | PMC |
http://dx.doi.org/10.1038/npp.2012.135 | DOI Listing |
Am J Psychiatry
January 2025
Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides).
Ketamine is a racemic compound and medication comprised of ()-ketamine and ()-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurology, Provincial Hospital of Bolzano (SABES- ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, 39100, Italy.
Introduction: Vortioxetine is a multimodal antidepressant with a high tolerability profile. Recent evidence suggests a role for vortioxetine in improving cognitive function and reducing functional disability linked to depression. We conducted a systematic review on the use of vortioxetine in different neurological disorders.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan.
Indoxyl sulfate (IS) has been implicated in the pathogenesis of cardiovascular diseases. IS is converted from indole, a metabolite of dietary tryptophan through the action of gut microbial tryptophanase, by two hepatic enzymes: CYP2E1 and SULT1A1. We hypothesized that the effect of tryptophan intake on IS production might differ from person to person.
View Article and Find Full Text PDFCNS Drugs
January 2025
New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!