Transparent, highly flexible, all nanowire network germanium photodetectors.

Nanotechnology

Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey.

Published: August 2012

We report on the fabrication and characterization of all nanowire (NW) network photodetectors. For this purpose, germanium (Ge) NW networks are used as active semiconducting elements, whereas single walled carbon nanotube (SWNT) and silver (Ag) NW networks are used as the contacts. Following their synthesis, all NW networks are deposited through simple solution based methods. Photoresponse characteristics and transparency of the photodetectors for different Ge NW densities are measured. The fabricated devices show a large response with short relaxation times (<10 ms), are flexible and transparent within the visible spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/32/325202DOI Listing

Publication Analysis

Top Keywords

nanowire network
8
transparent highly
4
highly flexible
4
flexible nanowire
4
network germanium
4
germanium photodetectors
4
photodetectors report
4
report fabrication
4
fabrication characterization
4
characterization nanowire
4

Similar Publications

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Radar-Terahertz-Infrared Compatible Stealth Coaxial Silver Nanowire@Carbon Nano-cable Aerogel.

Angew Chem Int Ed Engl

January 2025

Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.

Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.

View Article and Find Full Text PDF

Adaptive Radiative Thermal Management Using Transparent, Flexible Ag Nanowire Networks.

ACS Appl Mater Interfaces

January 2025

ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.

Effective heat management is critical for improving energy efficiency and minimizing environmental impact. Passive radiative heat management systems rely on specific materials and design configurations to naturally modulate temperature, enhance system reliability, and decrease operational costs by modulating infrared light. However, their static nature proves insufficient in dynamic settings experiencing significant temperature fluctuations.

View Article and Find Full Text PDF

Cross-alignment of silver nanowires network for efficient nanowelding.

Nanotechnology

December 2024

Taiyuan University of Technology, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China, Taiyuan, Shanxi , 030024, CHINA.

The performance of sliver nanowire (AgNWs) network flexible transparent electrodes is limited by large contact resistance, making it necessary to perform nanowelding to improve conductivity of the network. However, not all nanowire junctions can be welded. Our work indicates that the welding kinetics between nanowires depend on the crossing angle, with higher surface diffusion velocity prone to welding and fracture at nanowire junctions of crossing angles close to 90 degrees.

View Article and Find Full Text PDF

Wireless wearable multifunctional sensor based on carboxylated cellulose nanofibers/silver nanowires for ultra-sensitive, fast humidity response and body temperature monitoring.

Int J Biol Macromol

December 2024

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China. Electronic address:

Humidity and temperature sensors are considered as hotspots for the next generation of wearable multifunctional electronics. However, it is still a notable challenge to realize multifunctional sensors with high-performance humidity response, excellent mechanical properties, and accurate temperature monitoring capability. In this work, a hydrogen-bond cross-linked hybrid network was constructed between carboxystyrene-butadiene rubber (XSBR) and hydrophilic carboxylated cellulose nanofibers (CNF) noncovalently modified silver nanowires (AgNWs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!