Appropriate maximum holding times for analysis of total suspended solids concentration in water samples taken from open-channel waterways.

Water Sci Technol

Environment and Resource Sciences Department of Science, Information Technology, Innovation and the Arts, 41 Boggo Road, Dutton Park, Qld, 4102, Australia.

Published: October 2012

Many scientific laboratories follow, as standard practice, a relatively short maximum holding time (within 7 days) for the analysis of total suspended solids (TSS) in environmental water samples. In this study we have subsampled from bulk water samples stored at ∼4 °C in the dark, then analysed for TSS at time intervals up to 105 days after collection. The nonsignificant differences in TSS results observed over time demonstrates that storage at ∼4 °C in the dark is an effective method of preserving samples for TSS analysis, far past the 7-day standard practice. Extending the maximum holding time will ease the pressure on sample collectors and laboratory staff who until now have had to determine TSS within an impractically short period.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2012.316DOI Listing

Publication Analysis

Top Keywords

maximum holding
12
water samples
12
analysis total
8
total suspended
8
suspended solids
8
standard practice
8
holding time
8
∼4 °c
8
°c dark
8
tss
5

Similar Publications

: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (PLGA) as a solubility enhancer. : An antisolvent precipitation technique was employed to incorporate PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-PLGA.

View Article and Find Full Text PDF

This study explores the optimisation of rearing substrates for black soldier fly larvae (BSFL). First, the ideal dry matter content of substrates was determined, comparing the standard 30% dry matter (DM) with substrates hydrated to their maximum water holding capacity (WHC). Substrates at maximal WHC yielded significantly higher larval survival rates ( = 0.

View Article and Find Full Text PDF

Exploiting CotA laccase from Antarctic Bacillus sp. PAMC28748 for efficient mediator-assisted dye decolorization and ABTS regeneration.

Chemosphere

January 2025

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:

Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.

View Article and Find Full Text PDF

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

Electrospinning can be used to prepare membranes with characteristics for biomedical application. In this work, the electrospinning conditions for the fabrication of membranes based on polymers extracted from natural sources such as chitosan and collagen were optimized (injection flow, injection volume, distance from the collector to the neddle, needle size and voltage). Specifically, four formulations were prepared with pure chitosan and mixtures of collagen (purified or hydrolyzed) and agarose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!