Objective: The aim of this study was to determine whether angiotensin II (ANG II) affects the protein and mRNA expression of the mitochondrial antioxidant peroxiredoxin-3 (Prx-3) in cardiac fibroblasts, thereby contributing to the oxidative stress in the myocardium.
Method: Cardiac fibroblasts (passage 2) from normal male adult rats were cultured to confluency and incubated in Dulbecco's modified Eagle's medium for 24 h. The cells were then preincubated with(out) the tested inhibitors for 1 h and further incubated with/without ANG II (1 μmol/l) for 24 h.
Results: ANG II increased (P < 0.001) the mitochondrial production of reactive oxygen species in cardiac fibroblasts from 187.8 ± 38.6 to 313.8 ± 30.6 a.u./mg mitochondrial protein (n = 15). ANG II decreased (P < 0.01) the mRNA and protein expression of Prx-3 by 36.9 ± 3.0% and 29.7 ± 2.7% (n = 4), respectively. The ANG II-induced decrease in mRNA expression of Prx-3 was prevented by the angiotensin type 1 receptor blocker, losartan but not by the angiotensin type 2 receptor blocker, PD 123 319.
Conclusion: Our data indicate that ANG II-stimulated mitochondrial reactive oxygen species production in rat cardiac fibroblasts is accompanied by a reduction in the expression of the mitochondrial antioxidant Prx-3, and thereby potentially contributing to oxidative stress in the myocard.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HJH.0b013e32835726c1 | DOI Listing |
Nat Commun
December 2024
Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation.
View Article and Find Full Text PDFCytojournal
November 2024
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
Objective: Macrophages perform vital functions in cardiac remodeling after myocardial infarction (MI). Transglutaminase 2 (TG2) participates in fibrosis. Nevertheless, the role of TG2 in MI and mechanisms underlying macrophage polarization are unclear.
View Article and Find Full Text PDFiScience
December 2024
Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scATAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis revealed aging response heterogeneity and its dynamics over time.
View Article and Find Full Text PDFJ Geriatr Cardiol
November 2024
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
Background: Human interleukin (IL)-37 is a constituent of the IL-1 family with potent anti-inflammatory and immunosuppressive attributes. It has been demonstrated extensive beneficial effects on various diseases; however, its role in the pathogenesis of diabetic cardiomyopathy (DCM) remains unclear.
Methods: , DCM mouse model was established with streptozotocin injection and a high-fat diet in WT and cardiac fibroblasts (CFs) specific hIL-37b overexpression mice (IL-37-Tg).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!