Use of catechol as selective redox mediator in scanning electrochemical microscopy investigations.

Anal Chem

Institut des Sciences Chimiques de Rennes, Université de Rennes 1, CNRS, UMR 6226 (Equipe MaCSE), Rennes, France.

Published: September 2012

The use of catechols, and more specifically of dopamine, as a specific redox mediator for scanning electrochemical microscopy (SECM) investigations was evaluated in the challenging situation of an ultrathin layer deposited on a conductive substrate (carbon materials). Experiments show that dopamine is a well-adapted redox system for SECM in feedback mode and in unbiased conditions. Used as a redox mediator, catechol permits the investigations of modified surfaces without an electrical connection of the sample thanks to fast charge transfer kinetics but with a surface selectivity that does not exist in classical outer-sphere redox mediators. The interest of catechol in SECM as a sensitive redox mediator is exemplified by monitoring several modification steps of an ultrathin (<1 nm) hierarchically porous organic monolayer deposited on carbon substrates. For quantitative analysis, the SECM approach curves using dopamine could simply be characterized with an irreversible electron transfer kinetics model in a large range of pH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac301634sDOI Listing

Publication Analysis

Top Keywords

redox mediator
16
mediator scanning
8
scanning electrochemical
8
electrochemical microscopy
8
redox
6
catechol selective
4
selective redox
4
mediator
4
microscopy investigations
4
investigations catechols
4

Similar Publications

Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.

View Article and Find Full Text PDF

Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Pathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!