Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations and potentially contributing to the development of cancer. Because of their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment. DNA adducts are also valuable in mechanistic studies linking tumorigenic effects of environmental and industrial carcinogens to specific electrophilic species generated from their metabolism. While multiple experimental methodologies have been developed for DNA adduct analysis in biological samples, including immunoassay, HPLC, and ³²P-postlabeling, isotope dilution high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) generally has superior selectivity, sensitivity, accuracy, and reproducibility. As typical DNA adduct concentrations in biological samples are between 0.01-10 adducts per 10⁸ normal nucleotides, ultrasensitive HPLC-ESI-MS/MS methodologies are required for their analysis. Recent developments in analytical separations and biological mass spectrometry, especially nanoflow HPLC, nanospray ionization MS, chip-MS, and high resolution MS, have pushed the limits of analytical HPLC-ESI-MS/MS methodologies for DNA adducts, allowing researchers to accurately measure their concentrations in biological samples from patients treated with DNA alkylating drugs and in populations exposed to carcinogens from urban air, drinking water, cooked food, alcohol, and cigarette smoke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495176 | PMC |
http://dx.doi.org/10.1021/tx3002548 | DOI Listing |
J Ethnopharmacol
January 2025
The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:
Ethnopharmacological Relevance: Traditional Chinese medicine (TCM) is widely used in China for disease treatment and has become a valuable resource for drug development due to its high efficacy and low risk of side-effects. However, growing toxicity reports has garnered significant global attention. A major challenge in addressing TCM-induced toxicity is lack of specific and sensitive biomarkers for diagnosing and predicting its toxicity.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
The DNA adducts formed by the alkenylbenzene natural products, safrole (SF) and methyleugenol (MEG) are primarily attributed to their reported carcinogenic properties. Herein, we report a concise strategy to access -Ac-SF/MEG-dA phosphoramidites, which were selectively incorporated into DNA oligonucleotides by solid-phase DNA synthesis. The replication studies using human polymerases hpolκ and hpolη showed that both polymerases replicate these adducts error-free, which indicates that these polymerases do not contribute to the adduct-induced mutagenicity.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.
View Article and Find Full Text PDFToxins (Basel)
December 2024
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.
View Article and Find Full Text PDFChem Res Toxicol
December 2024
University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, Missouri 65211, United States.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!