In contrast to polymer membranes, ceramic membranes offer considerable advantages for safe drinking water provision due to their excellent chemical, thermal, and mechanical endurance. In this study, porous ceramic microtubes made of yttria stabilized zirconia (YSZ) are presented, which are conditioned for bacteria filtration by immobilizing lysozyme as an antibacterial enzyme. In accordance with determined membrane pore sizes of the nonfunctionalized microtube of ≤200 nm, log reduction values (LRV) of nearly 3 (i.e., bacterial retention of 99.9%) were obtained for bacterial retention studies using gram-positive model bacterium Micrococcus luteus. Immobilization studies of lysozyme on the membrane surface reveal an up to six times higher lysozyme loading for the covalent immobilization route as compared to unspecific immobilization. Antibacterial activity of lysozyme-functionalized microtubes was assessed by qualitative agar plate test using Micrococcus luteus as substrate showing that both the unspecific and the covalent lysozyme immobilization enhance the microtubes' antibacterial properties. Quantification of the enzyme activity at flow conditions by photometric assays reveals that the enzyme activities of lysozyme-functionalized microtubes depend strongly on applied flow rates. Intracapillary feeding of bacteria solution and higher flow rates lead to reduced enzyme activities. In consideration of different applied flow rates in the range of 0.2-0.5 mL/min, the total lysozyme activity increases by a factor of 2 for the covalent immobilization route as compared to the unspecific binding. Lysozyme leaching experiments at flow conditions for 1 h show a significant higher amount of washed-out lysozyme (factor 1.7-3.4) for the unspecific immobilization route when compared to the covalent route where the initial level of antibacterial effectiveness could be achieved by reimmobilization with lysozyme. The presented platform is highly promising for sustainable bacteria filtration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es3006496DOI Listing

Publication Analysis

Top Keywords

bacteria filtration
12
immobilization route
12
route compared
12
flow rates
12
lysozyme
8
bacterial retention
8
micrococcus luteus
8
covalent immobilization
8
compared unspecific
8
unspecific immobilization
8

Similar Publications

Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

Background: Adult people with cystic fibrosis (PwCF) have a higher risk of end-stage kidney disease than the general population. The nature and mechanism of kidney disease in CF are unknown. This study quantifies urinary kidney injury markers and examines the hypothesis that neutrophil activation and lung infection are associated with early kidney injury in CF.

View Article and Find Full Text PDF

Background: Globally, diarrhoeagenic Escherichia coli (DEC) has been implicated in the spread of waterborne diseases and abattoir wastewater has played a role in its dissemination into watersheds. This study isolated and characterised DEC from the abattoir wastewater-impacted Iyi-Etu River and other water sources at the Amansea livestock market settlement.

Methods: A total of 96 water samples comprising river water (upstream, downstream 1, downstream 2), borehole, well, sachet and abattoir wastewater samples were tested for DEC.

View Article and Find Full Text PDF

Fungal contamination in the air of hospital wards can affect the health of medical staff, patients, and caregivers. Through systematic analysis of the concentration, types, and particle size distribution characteristics of fungi in the air of wards in Wuhan, China, in 2023, it was found that there was no significant correlation between the concentration of fungi in the air of wards and the disease type and personnel density. The main influencing factors were temperature, humidity, and seasonal changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!