Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
November 2024
Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China. Electronic address:
It's currently a challenge to design a drug delivery system for chemotherapy with high drug contents and minimal side effects. Herein, we constructed a novel one-dimensional binary-drug delivery system for cancer treatment. In this drug delivery system, drugs (doxorubicin (DOX) and resveratrol (RES)) self-assemble on bacterial cellulose nano-whiskers (BCW) and are subsequently encapsulated by polydopamine (PDA) with high encapsulation efficiencies (DOX: 81.
View Article and Find Full Text PDFInt J Biol Macromol
March 2022
School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia. Electronic address:
Incompatibility of nanocellulose with non-polar polymer matrices disrupts the interfacial interaction and results in aggregation and phase separation. In this study a facile and environmentally friendly method was used to partially substitute the surface hydroxyl groups by attaching polysiloxane to impart hydrophobic properties. The silanization reaction proceeded with hydrolysis of triethoxyvinylsilane (TEVS) into reactive silanols followed by condensation to form the branched polymer.
View Article and Find Full Text PDFBiotechnol Biofuels
May 2021
Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
Plant-biomass-based nanomaterials have attracted great interest recently for their potential to replace petroleum-sourced polymeric materials for sustained economic development. However, challenges associated with sustainable production of lignocellulosic nanoscale polymeric materials (NPMs) need to be addressed. Producing materials from lignocellulosic biomass is a value-added proposition compared with fuel-centric approach.
View Article and Find Full Text PDFNanotechnology
August 2020
Department of Science Education/Convergent Systems Engineering, Dankook University, Jukjeon-dong, Yongin, Gyeonggi-do, Korea.
Attempts have been made to bring eco-friendly biomaterials into high-end electronic devices that require both high performance and durability. Polysaccharides, glycosidically linked monosaccharide units, are of particular interest because they serve as a promising material, owing to their environmentally friendly and adaptable features. We used a carbonized polysaccharide eco-material encompassing nanoparticles and chitosan to study the carrier-transport behavior of β-glucosic materials.
View Article and Find Full Text PDFInt J Biol Macromol
August 2015
Polymer Research Laboratory, Department of Chemistry, Govt. Model Science College, Jabalpur 482001, MP, India. Electronic address:
In this work, antibiotic drug Minocycline (Mic) loaded cellulose nano-whiskers (CNWs)/poly(sodium acrylate) hydrogel films were prepared and investigated for their drug releasing capacity in physiological buffer solution (PBS) at 37 °C. The (CNWs)/poly(sodium acrylate) film, containing 9.7% (w/w) of CNWs, demonstrated Mic release of 2500 μg/g while the plain poly(acrylate) film showed 3100 μg/g of drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!