In the present study, FTIR was used to analyze changes in chemical component contents and spectra characters of 3-hexulose-6-phosphate synthase/6-phosphate-3-hexuloisomerase (HPS/PHI) over-expressing transgenic and wild-type (WT) geraniums under formaldehyde (HCHO) stress to examine if FTIR could be a new method for identification of phenotypic differences between the transgenic plants with a photosynthetic HCHO-assimilation pathway and the WT plants. The WT and transgenic geranium plants were treated with 4 mmol x L(-1) HCHO for 0, 1, 2, 3 and 4 days, respectively. The comparison of FTIR spectral characteristics at different time points between the transgenic and WT plants indicated that the contents of carbohydrate, proteins and aliphatic compounds were significantly higher than those in the WT plants after 4 days of HCHO-treatment. This may be due to installation of the photosynthetic HCHO-assimilation pathway in the transgenic geranium, which enhanced its ability to metabolize and assimilate HCHO, thus allowed more HCHO to be fixed to 6-phosphate fructose, and then entered assimilation pathways for synthesis of a variety of intracellular components. The results suggest that FTIR can be a new method to identify the phenotypic differences between transgenic plants with a photosynthetic HCHO-assimilation pathway and WT plants.
Download full-text PDF |
Source |
---|
Viruses
December 2024
Applied Biotechnology Institute, California Polytechnic Tech Park, San Luis Obispo, CA 93407, USA.
Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China.
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China.
Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Life Sciences, Shihezi University, Shihezi 832000, China.
Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.
The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!