[The influence of laser plasma effects on the characteristics of thin film damage].

Guang Pu Xue Yu Guang Pu Fen Xi

College of Electronics & Information Engineering, Sichuan University, Chengdu 610064, China.

Published: May 2012

Optical components with higher surface quality and higher damage threshold requirement are necessary in high-energy/power laser system, which strongly depends on the performance of optical thin films. The damage morphologies on the surface of the HfO2/SiO2 anti-reflection film, caused by focused laser pulses, were investigated in the present paper. The studies revealed that the shock wave formed with the expansion of laser plasma, and its velocity and pressure decease rapidly with the radius. The spectrum of laser plasma, recorded by EEP2000 spectrometer, shows that the wavelength of laser plasma radiation is shorter than incident laser, which will increase the probability of multi-photon absorption; the photon energy in deep ultraviolet region, higher than the band gap of HfO2, can be absorbed directly. The ionization effect of laser plasma can easily induce film damage. The combination of shock wave and ionization effect determines the damage morphology of films. In the case of laser pulse focused on the film surface, the radiation and shock wave effects are the highest, not only the film is removed, but also the quartz substrate is broken-down. When the focus point is away from the film surface to a certain distance, the radiation of laser plasma and shock wave decrease rapidly, as a result, no damage can be found except that the thin-film can be peeled away from the substrate.

Download full-text PDF

Source

Publication Analysis

Top Keywords

laser plasma
24
shock wave
16
laser
10
film surface
8
plasma
6
film
6
damage
5
[the influence
4
influence laser
4
plasma effects
4

Similar Publications

Extended Time-Dependent Density Functional Theory for Multibody Densities.

Phys Rev Lett

December 2024

Key Laboratory for Laser Plasmas and School of Physics and Astronomy, and Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.

Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, Van Leeuwen theorem [Phys. Rev.

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Resonant Emittance Mixing of Flat Beams in Plasma Accelerators.

Phys Rev Lett

December 2024

Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.

Linear colliders rely on high-quality flat beams to achieve the desired event rate while avoiding potentially deleterious beamstrahlung effects. Here, we show that flat beams in plasma accelerators can be subject to quality degradation due to emittance mixing. This effect occurs when the beam particles' betatron oscillations in a nonlinearly coupled wakefield become resonant in the horizontal and vertical planes.

View Article and Find Full Text PDF

Realizing a 3C Fast-Charging Practical Sodium Pouch Cell.

Angew Chem Int Ed Engl

January 2025

Beihang University, 37 Xue Yuan Road, Hai Dian District, 100191, Beijing, CHINA.

Sodium-ion batteries (SIBs), endowed with relatively small Stokes radius and low desolvation energy for Na+, are reckoned as a promising candidate for fast-charging endeavors. However, the C-rate charging capability of practical energy-dense sodium-ion pouch cells is currently limited to ≤1C, due to the high propensity for detrimental metallic Na plating on the hard carbon (HC) anode at elevated rates. Here, an ampere-hour-level sodium-ion pouch cell capable of 3C charging is successfully developed via phosphorus (P)-sulfur (S) interphase chemistry.

View Article and Find Full Text PDF

Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!