Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

Proc Natl Acad Sci U S A

Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Published: October 2012

Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497778PMC
http://dx.doi.org/10.1073/pnas.1201802109DOI Listing

Publication Analysis

Top Keywords

chemical chaperones
12
protein structure
8
intrinsically disordered
8
disordered proteins
8
single-molecule experiments
8
experiments directly
8
protein
6
counteracting chemical
4
chemical chaperone
4
chaperone effects
4

Similar Publications

Phase boundaries promote chemical reactions through localized fluxes.

J Chem Phys

January 2025

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate.

View Article and Find Full Text PDF

Background: Epidemiological studies indicate that chronic short sleep and/or disrupted sleep are all associated with metabolic dysfunction, cardiovascular risk, cognitive impairments, and increased risk for Alzheimer's disease. We have shown that acute sleep deprivation disrupts proteostasis, leading to the activation of an adaptive endoplasmic reticulum (ER) stress response known as the unfolded protein response (UPR). However, prolonged ER stress triggers the integrated stress response, which has been implicated in memory impairments.

View Article and Find Full Text PDF

The unique fuel characteristics of butanol and the possibility of its microbial production make it one of the most desirable environmentally friendly substitutes for petroleum fuels. However, the highly toxic nature of 1-butanol to the bacterial strains makes it unprofitable for commercial production. By comparison, 2-butanol has similar fuel qualities, and despite the difficulties in its microbial synthesis, it holds promise because it may be less toxic.

View Article and Find Full Text PDF

Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Six consecutive days of intraperitoneal injections of 4-PBA were administered in a murine model before and after the cisplatin challenge.

View Article and Find Full Text PDF

Structural diversity of axonemes across mammalian motile cilia.

Nature

January 2025

Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.

Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!