Supercritical synthesis of biodiesel.

Molecules

Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.

Published: July 2012

The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268286PMC
http://dx.doi.org/10.3390/molecules17078696DOI Listing

Publication Analysis

Top Keywords

synthesis biodiesel
8
biodiesel synthesis
8
biodiesel fuel
8
biodiesel
5
supercritical synthesis
4
fuel lipids
4
lipids vegetable
4
vegetable oils
4
oils animal
4
animal fats
4

Similar Publications

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Bioethanol production is one of the key alternatives for fossil fuel use due to climate change. The study seeks to upscale tailor-made onsite enzyme blends for the bioconversion of cassava peels to bioethanol in simultaneous saccharification and fermentation (SSF) process using cassava peels-degrading fungi. The starch and cellulose contents of peels were determined.

View Article and Find Full Text PDF

Glycerol Adsorption on TiO Surfaces: A Systematic Periodic DFT Study.

ChemistryOpen

January 2025

Facultad de Ciencias Básicas, Universidad de Medellín, 050026, Medellín, Colombia.

Conversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO at the Density Functional Theory level.

View Article and Find Full Text PDF

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!