Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of congenital myopathies characterised by muscle weakness and specific skeletal muscle structural lesions. Actin accumulations, nemaline and intranuclear bodies, fibre-type disproportion, cores, caps, dystrophic features and zebra bodies have all been seen in biopsies from patients with ACTA1 disease, with patients frequently presenting with multiple pathologies. Therefore increasingly it is considered that these entities may represent a continuum of structural abnormalities arising due to ACTA1 mutations. Recently an ACTA1 mutation has also been associated with a hypertonic clinical presentation with nemaline bodies. Whilst multiple genes are known to cause many of the pathologies associated with ACTA1 mutations, to date actin aggregates, intranuclear rods and zebra bodies have solely been attributed to ACTA1 mutations. Approximately 200 different ACTA1 mutations have been identified, with 90 % resulting in dominant disease and 10 % resulting in recessive disease. Despite extensive research into normal actin function and the functional consequences of ACTA1 mutations in cell culture, animal models and patient tissue, the mechanisms underlying muscle weakness and the formation of structural lesions remains largely unknown. Whilst precise mechanisms are being grappled with, headway is being made in terms of developing therapeutics for ACTA1 disease, with gene therapy (specifically reducing the proportion of mutant skeletal muscle α-actin protein) and pharmacological agents showing promising results in animal models and patient muscle. The use of small molecules to sensitise the contractile apparatus to Ca(2+) is a promising therapeutic for patients with various neuromuscular disorders, including ACTA1 disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-012-1019-z | DOI Listing |
BMC Musculoskelet Disord
January 2025
Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.
Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.
Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.
Introduction: Gastric adenocarcinoma with enteroblastic differentiation (GAED) is a rare entity with worse prognosis compared to conventional gastric adenocarcinomas. Its histological characteristics are fetal gut-like architecture and tumor cells with cytoplasmic clearing, as well as positive immunohistochemical reaction to at least one of the enteroblastic markers. Hereby, we present a case of GAED with neuroendocrine marker positivity, with whole exome sequencing (WES), and an updated literature review.
View Article and Find Full Text PDFFront Neurol
November 2024
Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
Proc Natl Acad Sci U S A
November 2024
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H.
View Article and Find Full Text PDFCells
September 2024
Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy.
Unlabelled: was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a nonsense mutation to better understand the role of CCDC78 in muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!