Sarcosinemia is an autosomal recessive metabolic trait manifested by relatively high concentrations of sarcosine in blood and urine. Sarcosine is a key intermediate in 1-carbon metabolism and under normal circumstances is converted to glycine by the enzyme sarcosine dehydrogenase. We encountered six families from two different descents (French and Arab), each with at least one individual with elevated levels of sarcosine in blood and urine. Using the "candidate gene approach" we sequenced the gene encoding sarcosine dehydrogenase (SARDH), which plays an important role in the conversion of sarcosine to glycine, and found four different mutations (P287L, V71F, R723X, R514X) in three patients. In an additional patient, we found a uniparental disomy in the region of SARDH gene. In two other patients, we did not find any mutations in this gene. We have shown for the first time that mutations in the SARDH gene are associated with sarcosinemia. In addition, our results indicate that other genes are most probably involved in the pathogenesis of this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-012-1207-xDOI Listing

Publication Analysis

Top Keywords

sarcosine dehydrogenase
12
gene patients
8
sarcosine blood
8
blood urine
8
sardh gene
8
gene
6
sarcosine
6
mutations
4
mutations sarcosine
4
dehydrogenase gene
4

Similar Publications

Prostate cancer (PCa) remains a leading cause of cancer-related incidence and mortality in men. Disruptions in amino acid (AA) metabolism contribute to the disease progression, with brucine, a glycine antagonist, exhibiting antitumor effects. This study explores the antitumor impact of brucine on PCa and investigates its mechanisms in regulating AA metabolic pathways.

View Article and Find Full Text PDF

Chemical modification of Arthrobacter sarcosine oxidase by N-methylisothiazolinone reduces reactivity toward oxygen.

Biosci Biotechnol Biochem

May 2024

Division of Life Science, Graduate School of Science and Engineering, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka, Japan.

N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized.

View Article and Find Full Text PDF

is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde.

View Article and Find Full Text PDF

This study was aimed to investigate the prognostic value and clinical significance of sarcosine dehydrogenase (SARDH) in hepatocellular carcinoma (HCC) and to explore the underlying mechanisms. The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), HPA and CPTAC databases were adopted to analyze the expression of SARDH mRNA and protein between normal liver tissue and HCC, and examine their relationship with clinicopathological features. Kaplan-Meier analysis, Cox regression, as well as nomogram were adopted to explore the prognostic value of SARDH in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!