Charge localization increases chemical expansion in cerium-based oxides.

Phys Chem Chem Phys

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Published: September 2012

In this work, we demonstrate the mechanism by which electronic charge localization increases the chemical expansion coefficient in two model systems, CeO(2-δ) and BaCeO(3-δ). Using Density Functional Theory calculations, we predict that this coefficient is increased by more than 70% when charge is fully localized, consistent with the observation that materials with a smaller degree of charge localization have smaller chemical expansion coefficients. This finding has important consequences for devising materials with smaller chemical expansion coefficients and for the reliability of the widely-used Shannon's ionic radii.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp40754jDOI Listing

Publication Analysis

Top Keywords

chemical expansion
16
charge localization
12
localization increases
8
increases chemical
8
materials smaller
8
smaller chemical
8
expansion coefficients
8
charge
4
chemical
4
expansion
4

Similar Publications

Background: Long-term fasting demonstrates greater therapeutic potential and broader application prospects in extreme environments than intermittent fasting.

Method: This pilot study of 10-day complete fasting (CF), with a small sample size of 13 volunteers, aimed to investigate the time-series impacts on gut microbiome, serum metabolome, and their interrelationships with biochemical indices.

Results: The results show CF significantly affected gut microbiota diversity, composition, and interspecies interactions, characterized by an expansion of the Proteobacteria phylum (about six-fold) and a decrease in Bacteroidetes (about 50%) and Firmicutes (about 34%) populations.

View Article and Find Full Text PDF

Glaucoma treatment involves reducing the intraocular pressure (IOP), which can damage the optic nerve, to a normal range. Aqueous drainage devices may be used for treatment, and a variety of devices have been proposed. However, they have a non-variable and uniform inner diameter, which makes it difficult to accommodate the IOP fluctuations that occur after glaucoma surgery.

View Article and Find Full Text PDF

Bead-foaming technology effectively addresses production cycles, polymerization control, and cellular structure defects in conventional bulk foaming, especially in high-performance PMI foams. In this work, highly expandable PMI beads were synthesized based on the aqueous suspension polymerization of methacrylic acid-methacrylonitrile-tert-butyl methacrylate (MAA-MAN-tBMA) copolymers. The suspension polymerization was stabilized by reducing the solubility of MAA by the salting-out effect and replacing formamide (a common PMI foaming agent) with tBMA.

View Article and Find Full Text PDF

Expansion of the microbial drug discovery pipeline has been impeded by a limited and skewed appreciation of the microbial world and its full chemical capabilities and by an inability to induce silent biosynthetic gene clusters (BGCs). Typically, these silent genes are not expressed under standard laboratory conditions, instead requiring particular interventions to activate them. Genetic, physical, and chemical strategies have been employed to trigger these BGCs, and some have resulted in the induction of novel secondary metabolites.

View Article and Find Full Text PDF

Integrating climate and physical constraints into assessments of net capture from direct air capture facilities.

Proc Natl Acad Sci U S A

January 2025

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!