A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From static structure to living protein: computational analysis of cytochrome c oxidase main-chain flexibility. | LitMetric

AI Article Synopsis

  • The study examines the conformational changes in CcO (cytochrome c oxidase) across different redox states, indicating significant mechanistic implications.
  • High-resolution crystallographic structures were analyzed using computational methods to identify flexible regions and predict low-energy motions within CcO.
  • The findings suggest that CcO undergoes rotational movements impacting proton and oxygen access pathways, revealing potential regulatory mechanisms linked to specific amino acids.

Article Abstract

Crystallographic structure and deuterium accessibility comparisons of CcO in different redox states have suggested conformational changes of mechanistic significance. To predict the intrinsic flexibility and low energy motions in CcO, this work has analyzed available high-resolution crystallographic structures with ProFlex and elNémo computational methods. The results identify flexible regions and potential conformational changes in CcO that correlate well with published structural and biochemical data and provide mechanistic insights. CcO is predicted to undergo rotational motions on the interior and exterior of the membrane, driven by transmembrane helical tilting and bending, coupled with rocking of the β-sheet domain. Consequently, the proton K-pathway becomes sufficiently flexible for internal water molecules to alternately occupy upper and lower parts of the pathway, associated with conserved Thr-359 and Lys-362 residues. The D-pathway helices are found to be relatively rigid, with a highly flexible entrance region involving the subunit I C-terminus, potentially regulating the uptake of protons. Constriction and dilation of hydrophobic channels in RsCcO suggest regulation of the oxygen supply to the binuclear center. This analysis points to coupled conformational changes in CcO and their potential to influence both proton and oxygen access.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341565PMC
http://dx.doi.org/10.1016/j.bpj.2012.03.040DOI Listing

Publication Analysis

Top Keywords

conformational changes
12
changes cco
8
cco
5
static structure
4
structure living
4
living protein
4
protein computational
4
computational analysis
4
analysis cytochrome
4
cytochrome oxidase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!