A simple method for preparing 5-fluorouracil surface-functionalized selenium nanoparticles (5FU-SeNPs) with enhanced anticancer activity has been demonstrated in the present study. Spherical SeNPs were capped with 5FU through formation of Se-O and Se-N bonds and physical adsorption, leading to the stable structure of the conjugates. 5FU surface decoration significantly enhanced the cellular uptake of SeNPs through endocytosis. A panel of five human cancer cell lines was shown to be susceptible to 5FU-SeNPs, with IC(50) values ranging from 6.2 to 14.4 μM. Despite this potency, 5FU-SeNP possesses great selectivity between cancer and normal cells. Induction of apoptosis in A375 human melanoma cells by 5FU-SeNPs was evidenced by accumulation of sub-G1 cell population, DNA fragmentation, and nuclear condensation. The contribution of the intrinsic apoptotic pathway to the cell apoptosis was confirmed by activation of caspase-9 and depletion of mitochondrial membrane potential. Pretreatment of cells with a general caspase inhibitor z-VAD-fmk significantly prevented 5FU-SeNP-induced apoptosis, indicating that 5FU-SeNP induced caspase-dependent apoptosis in A375 cells. Furthermore, 5FU-SeNP-induced apoptosis was found dependent on ROS generation. Our results suggest that the strategy to use SeNPs as a carrier of 5FU could be a highly efficient way to achieve anticancer synergism. 5FU-SeNPs may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn202452cDOI Listing

Publication Analysis

Top Keywords

selenium nanoparticles
8
achieve anticancer
8
anticancer synergism
8
apoptosis a375
8
5fu-senp-induced apoptosis
8
apoptosis
5
nanoparticles carrier
4
carrier 5-fluorouracil
4
5-fluorouracil achieve
4
synergism simple
4

Similar Publications

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Dual-Ligand Assisted Anisotropic Assembly for the Construction of NIR-II Light-Propelled Mesoporous Nanomotors.

J Am Chem Soc

January 2025

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

The advent of autonomous nanomotors presents exciting opportunities for nanodrug delivery. However, significant potential remains for enhancing the asymmetry of nanomotors and advancing the development of second near-infrared (NIR-II) light-propelled nanomotors capable of operating within deep tissues. Herein, we developed a dual-ligand assisted anisotropic assembly strategy that enables precise regulation of the interfacial energy between selenium (Se) nanoparticle and periodic mesoporous organosilica (PMO).

View Article and Find Full Text PDF

Selenium is a beneficial element in agriculture, particularly for its potential to improve plant growth and stress tolerance at suitable concentrations. In this study, Phaseolus vulgaris was foliar-sprayed with selenium selenate (Se) or selenium nanoparticles (SeNP) at different concentrations during the vegetative stage; afterward, the seed yield was analyzed for metabolomics using H, J-resolved and HSQC NMR data, and NMR databases. A total of 47 metabolites were identified with sugars being the major chemical class.

View Article and Find Full Text PDF

Chronic consequences of diabetes that are most commonly encountered are diabetic foot ulcers (DFUs), driven by microbiota-immune system dyshomeostasis, eventually leading to delayed wound healing. Available therapies, such as systemic or topical administration of anti-inflammatory or antimicrobial agents, are limited due to antibiotic resistance and immune dysfunction. Herein, a hybrid hydrogel dressing is developed as the artificial bioadhesive barrier at wound sites to maintain microbial and immunological homeostasis locally and have potent anti-inflammatory effects.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!