The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressure of 0.2 MPa. Samples without methane amendment stored at in situ pressure retained higher levels of sulfate reducing activity than samples stored at 0.1 MPa. Piezophilic SR showed distinct substrate specificity after hydrogen and acetate addition. SR activity in samples stored under methanic conditions was one order of magnitude higher than in non-amended samples. Methanic samples stored under low hydrostatic pressure exhibited no increased SR activity at high pressure even with the amendment of methane. These new insights into the effects of pressure on substrate specific sulfate reducing activity in anaerobic environmental samples indicate that hydrostatic pressure must be considered to be a relevant parameter in ecological studies of anaerobic deep-sea microbial processes and long-term storage of environmental samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398547PMC
http://dx.doi.org/10.3389/fmicb.2012.00253DOI Listing

Publication Analysis

Top Keywords

samples stored
16
hydrostatic pressure
12
pressure mpa
12
pressure
9
microbial sulfate
8
sulfate reduction
8
cold seep
8
japan trench
8
samples
8
situ pressure
8

Similar Publications

Background: The COVID-19 pandemic involved business closures (e.g., gyms), social distancing policies, and prolonged stressful situations that may have impacted engagement in health behaviors.

View Article and Find Full Text PDF

Development of a portable multi-step microfluidic device for point-of-care nucleic acid diagnostics.

Anal Chim Acta

January 2025

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:

Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).

View Article and Find Full Text PDF

Background: Neurofilament Light Chain (NfL) is a blood biomarker of axonal injury and neurodegeneration that can be used in a variety of neurological disorders. Despite the potential clinical use of plasma NfL across multiple neurological disorders, there is increasing evidence that underlying comorbidities such as renal impairment associated with chronic kidney disease (CKD) and cardiovascular diseases can increase NfL concentrations. The objective of this study was to determine the relationship between plasma NfL concentrations and renal function (CKD staging) in individuals without known neurological conditions.

View Article and Find Full Text PDF

Background: The identification of novel blood-based biomarkers of small vessel disease of the brain (SVD) may improve pathophysiologic understanding and inform the development of new therapeutic strategies for prevention. We evaluated plasma proteomic associations of white matter fractional anisotropy (WMFA), white matter hyperintensity (WMH) volume, enlarged perivascular space (ePVS) volume, and the presence of microbleeds (MB) on brain magnetic resonance imaging (MRI) in the population-based Multi-Ethnic Study of Atherosclerosis (MESA).

Methods: Eligible MESA participants had 2941 plasma proteins measured from stored blood samples (collected in 2016-2018) using the antibody-based Olink proteomics platform, and completed brain MRI scans in 2018-2019.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Background: The detection and monitoring of Alzheimer's disease (AD) biomarkers in plasma are crucial for early diagnosis and prognosis. However, the stability of plasma AD biomarkers can be compromised by the degradation caused by endogenous proteases present in blood. The efficacy of protease inhibitors in mitigating this degradation is yet to be established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!