Materials for biomedical applications are often chosen for their bulk properties. Other requirements such as a hemocompatible surface shall be fulfilled by suitable chemical functionalization. Here we show, that linear, side-chain methylated oligoglycerols (OGMe) are more stable to oxidation than oligo(ethylene glycol) (OEG). Poly(ether imide) (PEI) membranes functionalized with OGMes perform at least as good as, and partially better than, OEG functionalized PEI membranes in view of protein resistance as well as thrombocyte adhesion and activation. Therefore, OGMes are highly potent surface functionalizing molecules for improving the hemocompatibility of polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201200426 | DOI Listing |
Small
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662, Warszawa, Poland.
Surface relief grating formation in photo-responsive azo polymers under irradiation is a long-ago-found phenomenon, but all the factors governing its efficiency are still not fully recognized. Here, we report on the enormous impact of the polymer thickness on the possibility of fabrication of extremely high-amplitude surface deformations. We performed prolonged holographic recordings on the layers of the same azobenzene poly(ether imide), which had substantially different optical transmittances at the recording wavelength and revealed that the depths of the inscribed relief structures increased with the polymer thickness from a nondetectable value up to almost 2 µm, unaffected by the presence of a polymer-glass substrate interface in either sample.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.
View Article and Find Full Text PDFACS Appl Energy Mater
December 2024
Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Chemical Engineering Sciences, Foundation of Research and Technology- Hellas (FORTH/ICE-HT), Stadiou Street, Platani, Patras 26504, Greece.
Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!