Effect of deposit age on adsorption and desorption behaviors of ammonia nitrogen on municipal solid waste.

Environ Sci Pollut Res Int

College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.

Published: March 2013

Ammonia nitrogen pollution control is an urgent issue of landfill. This research aims to select an optimal refuse for ammonia nitrogen removal in landfill from the point of view of adsorption and desorption behavior. MSW (municipal solid waste) samples which deposit ages were in the range of 5 to 15 years (named as R(15), R(11), R(7), and R(5)) were collected from real landfill site. The ammonia nitrogen adsorption behaviors of MSW including equilibrium time, adsorption isotherms, and desorption behaviors including equilibrium time were determined. Furthermore, the effects of pH, OM, Cu(II), Zn(II), and Pb(II) on adsorption and desorption behavior of ammonia nitrogen were conducted by orthogonal experiment. The equilibrium time of ammonia nitrogen adsorption by each tested MSW was very short, i.e., 20 min, whereas desorption process needed 24 h and the ammonia nitrogen released from refuses was much lesser than that adsorbed, i.e., accounted for 3.20 % (R(15)), 14.32 % (R(11)), 20.59 % (R(7)), and 20.50 % (R(5)) of each adsorption quantity, respectively. The maximum adsorption capacity estimated from Langmuir isotherm appeared in R(15)-KCl, i.e., 25,000 mg kg(-1). The best condition for ammonia nitrogen removal from leachate was pH >7.5, OM 23.58 %, Cu(II) <5 mg L(-1), Zn(II) <10 mg L(-1), and Pb(II) <1 mg L(-1). Ammonia nitrogen in landfill leachate could be quickly and largely absorbed by MSW but slowly and infrequently released. The refuse deposited for 15 years could be a suitable material for ammonia nitrogen removal.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-012-1067-xDOI Listing

Publication Analysis

Top Keywords

ammonia nitrogen
32
adsorption desorption
12
equilibrium time
12
adsorption
8
desorption behaviors
8
ammonia
8
nitrogen
8
municipal solid
8
solid waste
8
nitrogen removal
8

Similar Publications

Mainstream anammox faces challenges in adapting to non-optimal temperatures and managing greenhouse gas emissions. This study investigates nitrogen removal and NO emissions in attached-growth anammox reactors subjected to rapid temperature shifts (15 - 55 °C). Temperature reductions to 15 - 25 °C had minimal impact on the anammox bacterial populations, with nitrogen removal rates of 0.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Air pollution monitoring and modeling are the most important focus of climate and environment decision-making organizations. The development of new methods for air quality prediction is one of the best strategies for understanding weather contamination. In this research, different air quality parameters were forecasted, including Carbon Monoxide (CO), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO), Ozone (O), Sulphur Dioxide (SO), Fine Particles Matter (PM), Coarse Particles Matter (PM), and Ammonia (NH).

View Article and Find Full Text PDF

Enhanced printing and dyeing wastewater treatment using anaerobic-aerobic systems with bioaugmentation.

J Hazard Mater

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China. Electronic address:

Printing and dyeing wastewater (PDW) is characterized by various pollutants, making it one of the most difficult industrial wastewaters to treat and poses a serious threat to the natural environment and public health. This study investigated the use of an anaerobic-aerobic system combined with bioaugmentation using Ochrobactrum anthropi S1 to treat PDW. The results indicated that after three rounds of inoculation, Ochrobactrum anthropi S1 successfully colonized the system, achieving final removal efficiencies of reactive black 5, Cr(Ⅵ), COD, and ammonia nitrogen of 95 %, 65 %, 90 %, and 85 %, respectively.

View Article and Find Full Text PDF

Effective Nitrate Electroconversion to Ammonia Using an Entangled CoO/Graphene Nanoribbon Catalyst.

ACS Appl Mater Interfaces

December 2024

Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil.

There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO) to ammonia (NH) due to the useful application of NH in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied CoO/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO to NH, where NH yield rate of 42.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!