The FoxO family of transcription factors plays an important role in longevity and tumor suppression by regulating the expression of a wide range of target genes. FoxO3 has recently been found to be associated with extreme longevity in humans and to regulate the homeostasis of adult stem cell pools in mammals, which may contribute to longevity. The activity of FoxO3 is controlled by a variety of post-translational modifications that have been proposed to form a 'code' affecting FoxO3 subcellular localization, DNA binding ability, protein-protein interactions and protein stability. Lysine methylation is a crucial post-translational modification on histones that regulates chromatin accessibility and is a key part of the 'histone code'. However, whether lysine methylation plays a role in modulating FoxO3 activity has never been examined. Here we show that the methyltransferase Set9 directly methylates FoxO3 in vitro and in cells. Using a combination of tandem mass spectrometry and methyl-specific antibodies, we find that Set9 methylates FoxO3 at a single residue, lysine 271, a site previously known to be deacetylated by Sirt1. Methylation of FoxO3 by Set9 decreases FoxO3 protein stability, while moderately increasing FoxO3 transcriptional activity. The modulation of FoxO3 stability and activity by methylation may be critical for fine-tuning cellular responses to stress stimuli, which may in turn affect FoxO3's ability to promote tumor suppression and longevity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433933PMC
http://dx.doi.org/10.18632/aging.100471DOI Listing

Publication Analysis

Top Keywords

foxo3
11
foxo3 stability
8
transcriptional activity
8
plays role
8
tumor suppression
8
protein stability
8
lysine methylation
8
methylates foxo3
8
methylation
5
activity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!