Estimating tear film spread and stability through tear hydrodynamics.

Optom Vis Sci

Centre for Contact Lens Research, University of Waterloo, Waterloo, Ontario, Canada.

Published: August 2012

Purpose: The stability and ease of spread of the tear-film over the contact lens surface may be an indicator of contact lens surface dewetting. The present in vivo methods of determining lens dewetting are complex. This study introduces a novel and objective way of determining the upward spread and stability of the tear-film through measurement of tear-film particle dynamics.

Methods: Ten adapted contact lens wearers wore the same type of contact lens. Using a video camera mounted to a slit-lamp, the tear-film spread over the lens surface was recorded after a blink, at 8× magnification and capture rate of 30 frames per second, at morning after lens insertion, and after 8 h of lens wear. Images from 20 videos, without blinks and without an observable change in fixation were analyzed without any further postprocessing of the images. Using a customized calibrated ImageJ macro for particle tracking, the velocity of naturally occurring reflective particles was determined. The results were analyzed using the R program and ProFit.

Results: The results established that the upward particle velocity was highest immediately after a blink and declined with time. The spread of the tear film measured through upward particle velocity was different on lens insertion than after 8 h of lens wear (p = 0.001). The exponential time constants ± SE were 346.02 ± 29.0 for lens insertion at morning and 1413.13 ± 419.6 after 8 h of lens wear.

Conclusions: A novel and non-invasive way to measure in vivo spread and stability of the prelens tear-film has been developed. Additional studies are needed to understand whether this simple measure is able to differentiate the performance of different soft contact lenses and how this method may help in the understanding other aspects of lens performance such as non-invasive tear breakup time, surface deposition, and lens comfort.

Download full-text PDF

Source
http://dx.doi.org/10.1097/OPX.0b013e3182644cb7DOI Listing

Publication Analysis

Top Keywords

contact lens
16
lens
14
spread stability
12
lens surface
12
lens insertion
12
tear film
8
insertion lens
8
lens wear
8
upward particle
8
particle velocity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!