There are a number of genetic tools available for studying Francisella tularensis, the etiological agent of tularemia; however, there is no effective inducible or repressible gene expression system. Here, we describe inducible and repressible gene expression systems for F. tularensis based on the Tet repressor, TetR. For the inducible system, a tet operator sequence was cloned into a modified F. tularensis groESL promoter sequence and carried in a plasmid that constitutively expressed TetR. To monitor regulation the luminescence operon, luxCDABE, was cloned under the hybrid Francisella tetracycline-regulated promoter (FTRp), and transcription was initiated with addition of anhydrotetracycline (ATc), which binds TetR and alleviates TetR association with tetO. Expression levels measured by luminescence correlated with ATc inducer concentrations ranging from 20 to 250 ng ml(-1). In the absence of ATc, luminescence was below the level of detection. The inducible system was also functional during the infection of J774A.1 macrophages, as determined by both luminescence and rescue of a mutant strain with an intracellular growth defect. The repressible system consists of FTRp regulated by a reverse TetR mutant (revTetR), TetR r1.7. Using this system with the lux reporter, the addition of ATc resulted in decreased luminescence, while in the absence of ATc the level of luminescence was not significantly different from that of a construct lacking TetR r1.7. Utilizing both systems, the essentiality of SecA, the protein translocase ATPase, was confirmed, establishing that they can effectively regulate gene expression. These two systems will be invaluable in exploring F. tularensis protein function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457491 | PMC |
http://dx.doi.org/10.1128/AEM.01679-12 | DOI Listing |
Cancer Rep (Hoboken)
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.
Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).
Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.
Postgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!