The aim of the study was to formulate and evaluate nanoparticles based on albumin to deliver 5-fluorouracil. The nanoparticles were prepared by coacervation method. The nanoparticles were characterized for particle size, surface charge, size distribution and drug loading capacity. The drug loading capacity varied from 4.22% to 19.8% (w/w). The mean particle size was 141.9 nm and surface charge was -30.3 mV. The drug loaded particles exerted a bi-phasic release pattern with an initial burst effect followed by a sustained release in pH 7.4 phosphate buffer. The drug release was first order diffusion controlled and the mechanism was Fickian. The drug loaded nanoparticles showed superior cytotoxicity when compared to the free drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2012.07.014DOI Listing

Publication Analysis

Top Keywords

nanoparticles based
8
based albumin
8
particle size
8
surface charge
8
drug loading
8
loading capacity
8
drug loaded
8
drug
6
nanoparticles
5
albumin preparation
4

Similar Publications

Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).

View Article and Find Full Text PDF

A Versatile Dual-Responsive Shape-Memory Gripper via Additive Manufacturing Toward High-Performance Cross-Scale Objects Maneuvering.

Small

January 2025

Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.

Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.

View Article and Find Full Text PDF

N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.

View Article and Find Full Text PDF

This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!