Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin-proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. Autophagy is a unique cellular process that facilitates degradation of bulky protein aggregates by lysosome. Recent studies have demonstrated that autophagy plays a crucial role in the pathogenesis of neurodegenerative diseases characterized by abnormal protein accumulation, suggesting that regulation of autophagy may be a valuable therapeutic strategy for the treatment of various neurodegenerative diseases. Sirtuin-2 (SIRT2) is a class III histone deacetylase that is expressed abundantly in aging brain tissue. Here, we report that SIRT2 increases protein accumulation in murine cholinergic SN56 cells and human neuroblastoma SH-SY5Y cells under proteasome inhibition. Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2012.07.010DOI Listing

Publication Analysis

Top Keywords

protein aggregates
16
neurodegenerative diseases
16
protein
9
cells proteasome
8
proteasome inhibition
8
abnormal protein
8
pathogenesis neurodegenerative
8
protein accumulation
8
sirt2
5
cells
5

Similar Publications

The heat-induced natural egg yolk is a discontinuous object formed by the accumulation of yolk spheres. However, the reason why yolk spheres form individual microgels rather than continuous gels has not been elucidated. This study investigated the different gelation behaviors in the yolk sphere exterior (EYSE) and the yolk sphere interior (EYSI) by using 4D-DIA proteomics, electron microscopy, and multispectral techniques.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial pathology, responsible for neurodegenerative disorders which in more than 60% of patients evolve into dementia. Comprehension of the molecular mechanisms underlying the pathology and the development of reliable diagnostic methods have made new and more effective therapies possible. In recent years, in addition to the classic anticholinesterases (AChEs), which can control the clinical symptoms of the disease, compounds able to reduce deposits of amyloid-β (Aβ) and/or tau (τ) protein aggregates, which are disease-modifying therapeutics (DMTs), have been studied.

View Article and Find Full Text PDF

Second-generation anti-amyloid monoclonal antibodies for Alzheimer's disease: current landscape and future perspectives.

Transl Neurodegener

January 2025

Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro Seo-Gu, Daejeon, 35365, Republic of Korea.

Alzheimer's disease (AD) is the most common type of dementia. Monoclonal antibodies (MABs) serve as a promising therapeutic approach for AD by selectively targeting key pathogenic factors, such as amyloid-β (Aβ) peptide, tau protein, and neuroinflammation. Specifically, based on their efficacy in removing Aβ plaques from the brains of patients with AD, the U.

View Article and Find Full Text PDF

Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.

View Article and Find Full Text PDF

Nuclear export protein (NEP) of the influenza A virus, being one of the key components of the virus life cycle, is a promising model for studying characteristics of formation of amyloids by viral proteins. Using atomic force microscopy, comparative study of aggregation properties of the recombinant NEP variants, including the protein of natural structure, as well as modified variants with N- and C-terminal affinity His-tags, was carried out. All protein variants under physiological conditions are capable of forming aggregates of various morphologies: micelle-like nanoparticles, flexible protofibrils, rigid amyloid fibrils, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!