The microclimate pH (μpH) in biodegradable polymers, such as poly(D,L-lactic-co-glycolic acid) (PLGA) 50/50, commonly falls to deleterious acidic levels during biodegradation, resulting in instability of encapsulated acid-labile molecules. The μpH distribution in microspheres of a more hydrophilic polyester, poly(D,L-lactide-co-hydroxymethyl glycolide) (PLHMGA), was measured and compared to that in PLGA 50/50 of similar molecular weight and degradation time scales. pH mapping in the polymers was performed after incubation under physiological conditions by using a previously validated ratiometric method employing confocal laser scanning microscopy (CLSM). Confocal μpH maps revealed that PLHMGA microspheres, regardless of copolymer composition, developed a far less acidic μpH during 4 weeks of incubation compared with microspheres from PLGA. A pH-independent fluorescent probe marker of polymer matrix diffusion of μpH-controlling water-soluble acid degradation products, bodipy, was observed by CLSM to diffuse ~3-7 fold more rapidly in PLHMGA compared to PLGA microspheres, consistent with much more rapid release of acids observed from the hydrophilic polymer during bioerosion. Hence, PLHMGA microspheres are less susceptible to acidification during degradation as compared to similar PLGA formulations, and therefore, PLHMGA may be more suitable to deliver acid labile molecules such as proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817572PMC
http://dx.doi.org/10.1016/j.biomaterials.2012.06.013DOI Listing

Publication Analysis

Top Keywords

compared plga
12
polydl-lactide-co-hydroxymethyl glycolide
8
plga 50/50
8
plhmga microspheres
8
microspheres
6
plga
5
plhmga
5
microclimate polydl-lactide-co-hydroxymethyl
4
glycolide microspheres
4
microspheres biodegradation
4

Similar Publications

Bloodstream infection in neonates is a complicated disease and presents a major challenge both in diagnosis and in therapeutic intervention. The focus of the present study was to investigate the incidence, the species distribution and the risk factors associated with mortality of bloodstream infections in a neonatal intensive care unit (NICU) and evaluating the antifungal susceptibility of traditional antifungal drugs and three nanoparticle-based drug delivery systems based on nanoparticles. A total of 458 patients were evaluated, and 9.

View Article and Find Full Text PDF

Ficus Carica extract (FC) is a natural herb that has received a lot of interest in cancer treatment due to its potential anticancer activities against various malignancies. However, due to FC's low bioavailability and low solubility, its clinical use as an anti-cancer medicine is constrained. The current study aimed to prepare FC-loaded PLGA nanoparticles (NPs) for cancer treatment.

View Article and Find Full Text PDF

Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!