Mechanical regulation of auxin-mediated growth.

Curr Biol

Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.

Published: August 2012

Background: The phytohormone auxin is a primary regulator of growth and developmental pattern formation in plants. Auxin accumulates at specific sites (e.g., organ primordia) and induces localized growth within a tissue. Auxin also mediates developmental responses to intrinsic and external physical stimuli; however, exactly how mechanics influences auxin distribution is unknown.

Results: Here we show that mechanical strain can regulate auxin transport and accumulation in the tomato shoot apex, where new leaves emerge and rapidly grow. Modification of turgor pressure, application of external force, and artificial growth induction collectively show that the amount and intracellular localization of the auxin efflux carrier PIN1 are sensitive to mechanical alterations. In general, the more strained the tissue was, the more PIN1 was present per cell and the higher the proportion localized to the plasma membrane. Modulation of the membrane properties alone was sufficient to explain most of the mechanical effects.

Conclusions: Our experiments support the hypothesis that the plasma membrane acts as a sensor of tissue mechanics that translates the cell wall strain into cellular responses, such as the intracellular localization of membrane-embedded proteins. One implication of this fundamental mechanism is the mechanical enhancement of auxin-mediated growth in young organ primordia. We propose that growth-induced mechanical strain upregulates PIN1 function and auxin accumulation, thereby promoting further growth, in a robust positive feedback loop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2012.06.050DOI Listing

Publication Analysis

Top Keywords

auxin-mediated growth
8
organ primordia
8
mechanical strain
8
intracellular localization
8
plasma membrane
8
auxin
7
mechanical
6
growth
6
mechanical regulation
4
regulation auxin-mediated
4

Similar Publications

Molecular insight into auxin signaling and associated network modulating stress responses in rice.

Plant Physiol Biochem

December 2024

Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India. Electronic address:

Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues.

View Article and Find Full Text PDF

Origin and evolution of auxin-mediated acid growth.

Proc Natl Acad Sci U S A

December 2024

School of Life Sciences, Southwest University, Chongqing 400715, China.

Article Synopsis
  • The classical acid growth theory posits that auxin promotes cell expansion by acidifying the apoplast through the action of plasma membrane-localized H-ATPase.
  • Comparative phylogenomic analysis indicates that the essential elements of this process originated in Charophyta algae and evolved with functional innovations during the transition of plants to land.
  • Despite lacking the typical auxin receptors like TIR1/AFB, the presence of auxin still resulted in significant growth and gene expression changes, suggesting an ancient growth mechanism evolved for terrestrial adaptation.
View Article and Find Full Text PDF

As rice is one of the most crucial staple food sources worldwide, enhancing rice yield is paramount for ensuring global food security. Fulvic acid (FA), serving as a plant growth promoter and organic fertilizer, holds significant practical importance in studying its impact on rice root growth for improving rice yield and quality. This study investigated the effects of different concentrations of FA on the growth of rice seedlings.

View Article and Find Full Text PDF

The drought-induced protein 19 (Di19) gene family encodes a Cys2/His2 zinc-finger protein implicated in responses to diverse plant stressors. To date, potential roles of these proteins as transcription factors remain largely elusive in maize. Here, we show that ZmDi19-7 gene exerts pivotal functions in regulation of plant height and organ growth by modulating the cell size in maize.

View Article and Find Full Text PDF

Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!