Fiber-protein is a byproduct arising from a process for fractionating high-quality protein from canola meal. The objective of this study was to evaluate the fiber-protein fraction by examining the chemical profiles, rumen degradation, and intestinal digestive characteristics and determining the nutritive value of the fiber-protein fraction as dietary components for dairy cattle in comparison with commercial canola meal and soybean meal. Available energy values were estimated based on National Research Council guidelines, whereas total true protein content potentially absorbable in the small intestine (DVE) were predicted using the predicted DVE/degraded protein balance (OEB) model. The results show that fiber-protein was a highly fibrous material [neutral detergent fiber (NDF): 556; acid detergent fiber (ADF): 463; acid detergent lignin: 241 g/kg of dry matter (DM)] compared with canola meal (NDF: 254; ADF: 212; acid detergent lignin: 90 g/kg of DM) due to the presence of a higher level of seed hulls in fiber-protein. Compared with canola meal, fiber-protein contained 90 g/kg of DM less crude protein (CP), 25% of which consisted of undegradable acid detergent-insoluble CP. Most of the ruminally undegradable nutrient components present in canola meal appeared to be concentrated into fiber-protein during the manufacturing process and, as a result, fiber-protein showed a consistently lower effective degradability of DM, organic matter, CP, NDF, and ADF compared with both canola meal and soybean meal. Available energy content in fiber-protein contained two-thirds of that of canola meal. The DVE was one-third that of soybean meal and one-fifth that of canola meal [DVE value: 58 vs. 180 (soybean) and 291 g/kg of DM (canola meal)]. The OEB value of fiber protein was positive and about half of that of soybean and canola meal [OEB value: 74 vs. 162 (soybean) and 137 g/kg of DM (canola meal)]. Fiber-protein can be considered as a secondary source of protein in ruminant feed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2011-5029 | DOI Listing |
J Anim Sci
January 2025
Department of Animal Science, South Dakota State University, Brookings, SD, 57007, USA.
The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Zoology, University of Sialkot, Sialkot, 51040, Punjab, Pakistan.
Microplastics (MPs) form when plastic debris is released into the aquatic environment, where they decompose and have deleterious effects on aquatic life. This study aimed to examine the harmful impacts of polystyrene MPs (PS-MPs) on the growth, carcass composition, hematology, digestibility, histopathology, and mineral analysis of Catla catla (11.09 ± 0.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
The co-product canola meal contains little fat and has been used in swine production as a protein source for several decades. More recently, locally produced canola cake has also become available that contains important quantities of residual oil. Both canola co-products contain a considerable quantity of phosphorus (P) with low availability.
View Article and Find Full Text PDFAnim Nutr
December 2024
Department of Poultry Science, University of Georgia, Athens, GA, USA.
Aquac Nutr
December 2023
Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572 Bremerhaven, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!