Background: Patients with locally advanced or recurrent rectal cancer often require multimodality treatment. Intraoperative radiation therapy (IORT) is a focal approach which aims to improve local control.
Methods: We retrospectively reviewed 42 patients treated with IORT following definitive resection of a locally advanced or recurrent rectal cancer from 2000-2009. All patients were treated with the Intrabeam® Photon Radiosurgery System (PRS). A dose of 5 Gy was prescribed to a depth of 1 cm (surface dose range: 13.4-23.1, median: 14.4 Gy). Median survival times were calculated using Kaplan-Meier analysis.
Results: Of 42 patients, 32 had recurrent disease (76%) while 10 had locally advanced disease (24%). Eighteen patients (43%) had tumors fixed to the sidewall. Margins were positive in 19 patients (45%). Median follow-up after IORT was 22 months (range 0.2-101). Median survival time after IORT was 34 months. The 3-year overall survival rate was 49% (43% for recurrent and 65% for locally advanced patients). Local recurrence was evaluable in 34 patients, of whom 32% failed. The 1-year local recurrence rate was 16%. Distant metastasis was evaluable in 30 patients, of whom 60% failed. The 1-year distant metastasis rate was 32%. No intraoperative complications were attributed to IORT. Median duration of IORT was 35 minutes (range: 14-39). Median discharge time after surgery was 7 days (range: 2-59). Hydronephrosis after IORT occurred in 10 patients (24%), 7 of whom had documented concomitant disease recurrence.
Conclusions: The Intrabeam® PRS appears to be a safe technique for delivering IORT in rectal cancer patients. IORT with PRS marginally increased operative time, and did not appear to prolong hospitalization. Our rates of long-term toxicity, local recurrence, and survival rates compare favorably with published reports of IORT delivery with other methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430560 | PMC |
http://dx.doi.org/10.1186/1748-717X-7-110 | DOI Listing |
Sci Rep
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
Crystal symmetry, which governs the local atomic coordination and bonding environment, is one of the paramount constituents that intrinsically dictate materials' functionalities. However, engineering crystal symmetry is not straightforward due to the isotropically strong covalent/ionic bonds in crystals. Layered two-dimensional materials offer an ideal platform for crystal engineering because of the ease of interlayer symmetry operations.
View Article and Find Full Text PDFNat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!