Here we present a new strategy for a simple and fast detection of cancer circulating cells (CTCs) using nanoparticles. The human colon adenocarcinoma cell line (Caco2) was chosen as a model CTC. Similarly to other adenocarcinomas, colon adenocarcinoma cells have a strong expression of EpCAM, and for this reason this glycoprotein was used as the capture target. We combine the capturing capability of anti-EpCAM functionalized magnetic beads (MBs) and the specific labeling through antibody-modified gold nanoparticles (AuNPs), with the sensitivity of the AuNPs-electrocatalyzed hydrogen evolution reaction (HER) detection technique. The fully optimized process was used for the electrochemical detection of Caco2 cells in the presence of monocytes (THP-1), other circulating cells that could interfere in real blood samples. Therefore we obtained a novel and simple in situ-like sensing format that we applied for the rapid quantification of AuNPs-labeled CTCs in the presence of other human cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl301726gDOI Listing

Publication Analysis

Top Keywords

circulating cells
8
colon adenocarcinoma
8
cells
6
simple monitoring
4
monitoring cancer
4
cancer cells
4
cells nanoparticles
4
nanoparticles strategy
4
strategy simple
4
simple fast
4

Similar Publications

Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol

January 2025

Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.

View Article and Find Full Text PDF

Circulating Cell-Free DNA in Metabolic Diseases.

J Endocr Soc

January 2025

Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany.

Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease.

View Article and Find Full Text PDF

Background: Proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID) is a rare entity classified under the umbrella of monoclonal gammopathy of renal significance. The clinical implications of circulating monoclonal immunoglobulin (MIg), light chain restriction on immunofluorescence (IF) microscopy, histopathological pattern, and type of therapy on renal outcomes are not clearly defined.

Materials And Methods: Sixteen patients of PGNMID diagnosed between 2013 and 2020 were included from a biopsy registry of 11,459 patients at a single center.

View Article and Find Full Text PDF

Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!