An SPE method for selective separation-preconcentration of Cu(ll), Zn(II), Ni(II), and Fe(III) on multiwalled carbon nanotubes (MWCNTs) modified by glutaric dihydrazide prior to flame atomic absorption spectrometric determination was investigated. The adsorption was achieved quantitatively on MWCNTs at pH 5.0, and then the retained metal ions on the adsorbent were eluted with 1 M HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg/g for Cu(ll), Zn(ll), Ni(ll), and Fe(lll), respectively. The LOD values of the method were 0.21, 0.11, 0.24, and 0.27 microg/L for Cu(ll), Zn(ll), Ni(ll), and Fe(lll), respectively. The RSDs were lower than 3.01%. The method was applied for the determination of analytes in soil, river water, and wastewater samples with satisfactory results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5740/jaoacint.11-273 | DOI Listing |
J AOAC Int
August 2012
Payame Noor University 19395-4697, Department of Chemistry, Tehran, I.R. of Iran.
An SPE method for selective separation-preconcentration of Cu(ll), Zn(II), Ni(II), and Fe(III) on multiwalled carbon nanotubes (MWCNTs) modified by glutaric dihydrazide prior to flame atomic absorption spectrometric determination was investigated. The adsorption was achieved quantitatively on MWCNTs at pH 5.0, and then the retained metal ions on the adsorbent were eluted with 1 M HNO3.
View Article and Find Full Text PDFJ Control Release
February 2004
Departments of Physics and Chemistry, University of North Texas, 211 Avenue A, Denton, TX 76203, USA.
Monodisperse nanoparticles of poly-N-isopropylacrylamide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid (PNIPAM-co-AA) were synthesized. The close-packed PNIPAM-co-allylamine and PNIPAM-co-AA nanoparticles were converted to three-dimensional gel networks by covalently crosslinking neighboring particles at room temperature and neutral pH using glutaric dialdehyde and adipic acid dihydrazide, respectively. Controlled release studies were conducted using dextran markers of various molecular weights as model macromolecular drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!